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ABSTRACT:   Based on the idea that turbulence is the flow phenomenon caused by the movement of vortices, the 
structures of turbulent boundary layer are discussed.  The circulation is the most important factor to characterize the 
flow structures of inner and outer layers.  The large-scale motions such as the bulge in the outer layer and the burst 
in the inner layer can be explained by the mutual interactions between vortices. 
 
1  INTRODUCTION 
    The real fluid is known to bear the velocity gradient by producing vorticity inside the fluid itself.  
This is the viscosity.  If we call the fluid elements which carry vorticity as the eddies, their effects are 
expressed by the circulation π r2 ω which is equivalent to kinematic viscosity.  Here r is the radius of the 
fluid element of a cylindrical shape which contains vorticity ω.  This fluid element forms the nucleus or 
the core of eddy to sustain the velocity gradient by its rotation. 
    The vortex is the assemblage of eddies, which has enough energy and power to govern the flow 
patterns.  The velocity distributions and the unique coherency of the boundary layer turbulence can be 
explained by the mutual interactions between vortices. 
 
2  TURBULENCE AND VORTEX 
    In the laminar flow, the viscosity µ  is defined by 

             µ =ρ v = ρπ r2ω                                                           （1） 

where ν  is the kinematic viscosity. 
    Because the vorticity is nothing but the velocity gradient du/dy, the shear stress τ  is given by 

               τ =µω = ρ π r2 ω2                                                                                               （2） 

    Eq.(1) shows that the size of the core increases according to the decrease of the velocity gradient 
because the viscosity of fluid is constant under given environmental conditions. 
    Eq.(2) shows that the viscous stress increases proportionally to the velocity gradient, but this trend 
ceases to be applicable if τ  exceeds some critical value τ cri  intrinsic to the flow condition, probably its 
ratio to the mean flow energy, and the vortex nuclei which contain energy per unit mass 

             π r2 ω2  = τ cri /ρ                                                              （3） 

are released into the flow.  These nuclei take the surrounding fluid inside and grow in size with keeping 



 

the same energy.  This is the birth of turbulence. 
    Because the interacting activity between vortices or the vortex potential is determined by their rotary 
moment or the circulation 

            π r2ω ∼ (τ cri /ρ ) / ω                                                          （4） 

the vortices which pass through the region of smaller velocity gradient interact more powerfully.  The 
integration of vortices near the outer edge of the boundary layer certifies the manifest mentioned above.  
    Usually turbulence is accepted as the irregular motions of the flow.  The idea to treat the turbulent 
flow as the ensemble of various waves is most popular, and the concept of frequency or spectrum of 
turbulence has been derived from this approach.  This approach is favorable for the mathematical 
description of turbulence especially of its outbreak (transition) from laminar flow.  The numerical 
calculus by computer and the mathematical approach from a statistical point of view also seem to be 
attractive to describe the turbulence phenomena.   
    But for those who want to explore the flow phenomena as the substantial motion of the fluid, these 
are not so welcome.  
    To grasp the turbulent motion of the fluid substance, it is necessary to follow the flow pattern caused 
by the movement of fluid elements in the Lagrangian way.  This can be performed by representing the 
vorticity-containing fluid elements by the Rankin vortices which are composed of the rotating core and 
the surrounding circulating fluid.  When multiple vortices exist, they interact mutually and move out 
from their own courses.  Their paths can be determined decisively, but if the number of vortices becomes 
large their motions become very complicated and look to be very random.  This is our turbulence. 
 
3  VELOCITY DISTRIBUTIONS OF TURBULENT BOUNDARY LAYER 
    The turbulent boundary layers are known to be composed of two layers, the outer layer and the inner 
layer.  For the inner layer, the logarithmic law velocity distribution has been established.  It assumes that 
the wall shear stress prevails through the inner layer.  As to the outer layer velocity distribution, many 
theories are offered, among which "The Law of the Wake" proposed by Coles(1956)[1] is the most popular.   
It divides the layer into two parts, the inner layer dependent part and the residual part, and treats the latter 
as the wake type flow.  But we are rather suspicious to this approach because the outer layer turbulence 
is strong enough to destroy the wall effects and accepts the free shear layer type flow pattern to prevail 
whole through the boundary layer except a narrow transient region adjacent to the wall layer.  The power 
law velocity distribution has been found to be applied with reasonable accuracy[2].  The inner layer is the 
region where the vortices produced at the wall prevail and the effects of the wall predominate, from 
which the logarithmic velocity distribution was derived. 
    In Fig 1a three cases of velocity distributions picked up from more than forty experiments are shown, 
in which the junction between the inner and outer layer is  marked by YM.  From the figure we can 
accept the validity of the power law and log law for a wide range of Reynolds number.  Both the power 
index ‘Nw’and the friction velocity ‘uτ  ’ which characterizes the log law distribution decrease with 
Reynolds number as are shown in Fig 1b.  It shows that the velocity distributions in the outer layer  
Y>YM  become more and more flat suggesting the decrease of turbulent energy production. 
 



 

 
 

 
 

    If turbulence is the flow phenomenon caused by vortex motions, the velocity distributions of the 
turbulent boundary layer must be derived from the vortex mechanism. 

Outer Layer Velocity Distribution  
    Because the outer layer is covered by free shear layer type turbulence, we employed three rows of 
vortices to relate them to the velocity distributions[3].  The reason we employed three rows of turbulent 
vortices is because a single vortex, which probably appears at the beginning, undergoes stretching due to 
the velocity difference and can no longer sustain the group of vorticity-containing particles and breaks 
down into three.  The calculated distributions are satisfactory as shown in Fig 2. 
 

 
Fig 2:  Velocity distribution of vortex rows 



 

Inner Layer Velocity Distribution  
    The inner layer is the region where the vortices produced at the wall prevail and the effects of the 
wall predominate.  These vortices are supposed to increase its size linearly with the distance from the 
wall  y keeping the same intensity r2ω2.    Using the relations ω =du/dy and r ∼y, we can derive the 
following equation 

              du/dy ∼  uτ  / y                                                          （5） 

where             uτ  = (τ wall /ρ )1/2                                                            （6） 

is the friction velocity.  Eq.(5) leads to the logarithmic velocity distribution with ‘uτ  ‘ as the character- 
istic constant. 
    The decrease of  ‘uτ  ‘ shown in Fig 1b suggests the decrease of the production of turbulent energy 
with Reynolds number.  The same tendency is found in the boundary layer of the accelerated flows in 
which the re laminarization problem is the most essential[4]. 
 
4  STRUCTURE OF BOUNDARY LAYER TURBULENCE 
    The boundary layer turbulence can be classified into two types, the free shear layer type and the wall 
layer type.  Because the turbulence is induced by the movement of the vorticity-containing particles, its 
flow phenomena are dependent on the vortical power or circulation of the particles (Eq . 3).  If it is large, 
the particles become active and turbulence is rough, but if not, turbulence is quiet and ordered.  The free 
shear layer turbulence is the former type and the wall turbulence is the latter. The active particles interact 
with the neighboring particles to cause large-scale turbulence and give birth the turbulent vortices or the 
coherent structures. 

Outer Layer Turbulence 
    The outer layer turbulence is the free shear layer type.  It is composed of rough vortices, which have 
a tendency to make groups called as the coherent or the bulge structures.  In our turbulence model, three 
rows of turbulent vortices were employed to fit the velocity distribution accurately.  These rows interact 
one after another when they move downwards and exhibit periodical or intermittent patterns.  The mean 
period of the coherent structures, given by TUe/δ ≅ 5, is the interval of overlapping between row 1 and 
row 2 vortices.  The schematic drawing of the overlapping process is given in Fig.3. 
 

 
Fig 3:  Time dependent velocity components and flow patterns 



 

Inner Layer Turbulence (Wall Turbulence) 
    The inner layer is covered by vortices which are borne at the wall. They grow linearly in size with the 
distance from the wall keeping the same strength.  Because of the steep velocity gradient their size is still 
small, and therefore their power or the interacting activity is weak and the resulting turbulence is calm 
and quiet. 
    The burst structures which appear in the basically quiet inner layer and are known to be the source of 
turbulent energy of the whole boundary layer, are supposed to be brought by the interactions between 
vortex groups of the outer layer, probably of row 2 and row 3. 
    The burst has a three dimensional structure which cannot be explained by the two-dimensional vortex 
analysis.  The Goertler type hairpin vortex caused by the pressure gradient near the wall may be helpful 
to understand this three-dimensionality.  

Energy Cycle of Turbulent Boundary Layer 
    The energy of the outer layer is supplied from the burst, which is promoted by the interaction between 
the vortices of the outer layer.  This process makes the energy cycle of the turbulent boundary layer from 
outer layer to inner layer and from inner layer to outer layer. If the turbulence of the outer layer decreases, 
the promotion of the burst reduces, which in turn pushes the decrease of the energy supply to the outer 
layer.  The relaminarization of the accelerated flow boundary layer is the model of this energy cycle.  
This may give the answer to the question about the problem “what happens in the uniform flow boundary 
layer at infinitely high Reynolds number ?”. 
 
5  CONCLUSIONS 
    Based on the idea that turbulence is the flow phenomena associated with the movement of vortices, 
the structure of the turbulent boundary layer has been discussed.   These vortices are characterized by 
their strength ρ (r2ω2) and power ρ (r2ω), the former of which corresponds to the turbulent intensity, and 
the latter to the turbulent viscosity. 
    The difference between the outer layer turbulence and inner layer turbulence is brought by the dif- 
ference of their power.  The former is very active in the sense that the fluid particles crowd to make 
groups, but the latter is very calm and makes ordered flow patterns.  Both are tied up through the burst 
structures which appear in the inner layer periodically and supply energy to keep whole layer turbulent.  
The appearance of the burst structure in the inner layer which otherwise quiet is brought by the inter- 
actions between the outer layer vortices.  This feed back system seems to cease when Reynolds number 
or when the streamwise pressure gradient (negative) exceeds some critical value. 
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ABSTRACT:  The near wake behind a sinusoidal cylinder has been investigated experimentally using hot-wire 
anemometer and flow visualization. The sinusoidal cylinder with λ/D = 2 gives the maximum 22% drag reduction at 
Re = 104. The wake structure shows periodic variation along the spanwise direction. The near wake in saddle plane 
has wider wake width and larger velocity deficit, compared with the nodal plane. The elongated vortex formation 
region of sinusoidal cylinder seems to be related with drag reduction. The visualized flow shows the 3-D vortex 
structure in the near wake behind the sinusoidal cylinders. 
 
1. INTRODUCTION 

Vortex shedding from a bluff body has been a challenging area for fluid dynamic researches. For 
example, the large drag forces and possible vortex-induced vibration of pipes and long slender tubular 
should be considered in design of offshore structures. There are several passive flow control techniques to 
reduce drag force and suppress regular vortex shedding. These techniques employ some forms of three-
dimensional geometric disturbance to the nominally 2-D bluff body, for instance, helical strakes, grooves, 
ribbons, bump …etc.   

Tombazis and Bearman (1993, 1997)[4,8] obtained 34% maximum drag reduction by introducing a 
blunt-based model with wavy trailing edge at Reynolds number of 40,000. They mentioned that the 
introduction of a spanwise waviness at the trailing edge could fix the position of vortex dislocation, 
resulting in drag reduction. Bearman and Owen (1998)[3] investigated the influence of spanwise waviness 
on flow around a rectangular cylinder with sinusoidal shape both in front and rear face. They obtained 
about 30% drag reduction, compared with equivalent straight simple body and found the optimal ratio of 
peak-to-peak wave height divided by wavelength is between 0.06 and 0.09. Ahmed (1993)[1] investigated 
experimentally the wake behind a wavy cylinder having cross-sectional variation along the span. He 
focused on the topology of boundary separation and turbulence structure. However, he did not mentioned 
about drag reduction and suppression of vibration. Recently Lam et al. (2003)[7] investigated the near 
wake of a wavy cylinder using LDV measurement and preliminary numerical simulation. The wavy 
geometry played an important role on vortex formation length variation and drag reduction and vortex 
shedding suppression.  
 In this study, we investigated the effects of sinusoidal variation of cylinder cross-section on drag 
reduction and modification of wake structure as a passive flow control method. Two models of sinusoidal 
cylinders with the mean diameter Dm = 20mm and λ/D = 1 and 2 were tested. The mean velocity and 
turbulence intensity profiles in the near wake behind the wavy cylinders were measured by using a hot-
wire anemometer. In addition, flow structure around the cylinders was visualized using the particle-
tracing method and the smoke-wire technique. The results were compared with those for a smooth 
circular cylinder having the same equivalent diameter D = Dm. 
 
2. EXPERIMENTAL APPARATUS AND METHOD 

2.1 Experimental model 



 One circular cylinder and two sinusoidal cylinders were tested in a wind tunnel. The coordinate and 
terminology used for the sinusoidal cylinder are shown in Fig 1. The axial location of maximum diameter 
is termed “geometric node” and that of minimum diameter is termed “geometric saddle”. The geometry of 
the sinusoidal cylinder can be described by the following equation:  

   D = Dm + 2Wcos (2πy/λ)                                (1) 

)2sin(4)(
λ
π

λ
π yW

dy
ydD

−=                            (2) 

where D is the local diameter of sinusoidal cylinder, Dm = 20mm is the mean diameter of sinusoidal 
cylinder. In this study, two sinusoidal cylinders having different wave lengths of λ = D and 2D have the 
same wave height W = 4m. The wave steepness (W/λ) plays important role in finding the optimal shape 
of sinusoidal cylinder, especially in computational analysis[2]. 
 
2.2 Experimental methods 
 Drag force, mean velocity and turbulence intensity profile were measured in a closed-return type 
subsonic wind tunnel with a test section of 0.72 m x 0.60 m. The free stream turbulence intensity is less 
than 0.06 % at U0 = 10m/s. The flow structures around the cylinders were measured at Reynolds numbers 
which based on Dm Re = 5.3×103 and Re = 2.1×104. Wake velocity profiles were measured using an I-
type hot-wire probe (DANTEC 55P11) and Pitot tube. Hot-wire probe was traversed using a 3-D traverse 
system with an accuracy of 0.01 mm over the range z/D = –3 ~ 3 with an interval of∆ =0.15D. The 
aerodynamic forces were measured using a 3-component load-cell (Nissho LMC-3502). The load-cell 
was connected to a high-gain DC strain amplifier (DSA-100). The output signals were digitized with a 
DT2838 A/D converter. The drag coefficient C

z

D was calculated by dividing the drag force with the 
dynamics pressure based on the effective frontal area A and free stream velocity Uo:  

    
AU

Drag
D 2

0

2
ρ
×

=C                                                                                                            (3)     

 The effective frontal area A shape of sinusoidal cylinders was the same as that of the smooth 
cylinder. 
 Flow visualization tests were performed in a water channel at various Reynolds numbers in order to 
observe flow patterns of wake behind the sinusoidal cylinders. The particle tracing method was 
performed in a circulating water channel with a test section of 0.30 m x 0.25 m. Poly-vinyl-chloride 
particles with an average diameter of 200µm were used as tracer particles. The particles were illuminated 
by a thin cold light-sheet supplied from a 150W halogen lamp. Two-dimensional slices of the wake 
behind the nodal, saddle and middle planes were visualized. In order to see the 3-D structure of near wake 
behind the sinusoidal surface geometry, the top views were also visualized. All flow visualization tests 
using particle tracing method were carried out at Re = 3000 and 10,000.  
 
3. EXPERIMENTAL RESULTS AND DISCUSSTION  

3.1 Quantitative analyze 
  Total drag coefficients of two sinusoidal cylinders (λ/D = 1, 2) and one smooth circular cylinder are 
shown in Fig. 2. The maximum drag reduction is about 22% at λ/D = 2 and Re = 104. It is interesting to 
note that the drag reduction of model 1 is lager compared with model 2 and smooth cylinder. It may be 
attributed to the modification of flow structure due to three-dimensional geometry of experimental models. 
How does it make such change? For this, we investigated flow structure behind the sinusoidal cylinder, 
especially the modification of the wake structure. 
 Fig. 3 shows variation of the mean streamwise velocity profiles measured at the downstream 
locations X/D = 4, 6 and 8 for the free stream velocity of U0 = 4 m/s (Re = 5333). The location of X/D = 
4 is just outside of the vortex formation region which was predicted about 3 times of diameter for the case 
smooth cylinder [5]. Because the near wake shows periodic flow pattern along the span of the sinusoidal 
cylinders, velocity measurements were preformed for one period of the model. The mean streamwise 



velocity profiles show a larger velocity deficit in the saddle plane, compared with that at other 
measurement planes. As the flow goes downstream, variation of the mean streamwise velocity between 
different spanwise locations (Y = 0 mm, 10 mm and 20 mm) is decreased and smaller than that of smooth 
cylinder. At further downstream location, the velocity deficit is decreased and the wake width variation is 
also reduced. This implies that the smooth cylinder causes more momentum loss than the sinusoidal 
cylinder at further downstream. From this we can conjecture that vortex shedding in the saddle plane 
entrains larger amount of inviscid fluid from the outer free stream, compared with that in the nodal plane. 
These results explain why the vortex formation length and the drag coefficient of two models are different. 
 The turbulence intensity distributions of streamwise velocity component measured along the wake 
centerline are shown in Fig. 4. Measurements were preformed at two Reynolds numbers, Re = 5333 and 
Re = 21600. Along the spanwise direction, the peak location of streamwise turbulence intensity shifts 
downstream. In addition, the turbulence intensity decreases with the increase of Re. There are several 
definitions of the vortex formation region. For example, Bloor (1963) [5] defined the end of the vortex 
formation region as the location after which oscillating wake characteristics are observed. Gerrad 
(1966)[6] determined the end of vortex formation region at which fluid from outside of the wake first cross 
the wake axis. The vortex formation region is influenced by two vortices, one from the upper side of the 
cylinder and the other from the lower side. Therefore, at the end of the vortex formation region, the 
velocity fluctuations, i.e. turbulence intensity, have a maximum value at the vortex shedding frequency. 
In this study, we measured the length of the vortex formation region by measuring streamwise turbulence 
intensity along the wake centerline with an I-type hot-wire probe. The lengths of the vortex formation 
region are summarized in Table 1. 
 
 Table. 1 Vortex formation length Lf 

Sinusoidal Cylinder  (λ/D = 2) Sinusoidal Cylinder  ( λ/D = 1) 

Node Middle Saddle Node Middle Saddle 
Re Circular 

cylinder 
Y = 0 mm Y= 10 mm Y = 20 mm Y = 0 mm Y = 5 mm Y = 10 mm

5333 2.20 2.85 3.00 3.20 2.00 2.20 2.30 

10600 1.30 1.30 1.4 1.55 1.30 1.35 1.40 

21600 1.20 1.20 1.35 1.50 1.35 1.35 1.40 

Compared with smooth cylinder, the vortex formation region of the wake behind sinusoidal cylinder is 
elongated. The model 1 (λ/D = 2) has larger values than the model 2 (λ/D = 1). Along the span of wavy 
cylinder, the formation region length shows some variation. As point out by Bearman (1965)[3], the 
formation length is inversely proportional to the base pressure coefficient Cpb. The drag coefficient CD 
mainly results from pressure difference acting on the upstream and downstream sides of the cylinder. In 
the subcritical regime CD is proportional to Cpb. The elongation of vortex formation region brings high-
pressure in the region near the rear side of the cylinder; hence the drag coefficient is decreased. In 
addition, the extension of the vortex formation region shifts downstream the vortices shed from the 
cylinder. The alternate shedding of vortices induces pressure fluctuations on the opposite side of the 
cylinder and brings about fluctuating lift coefficient CL. The elongated vortex formation region in the near 
wake of wavy cylinder would cause drag reduction and the suppression of vortex-induced vibration. 
 
3.2 Flow visualization 
  Visualized flow images of wake in the nodal and saddle planes at Re = 3000 and Re = 10,000 using 
the particle tracing method are shown in Fig. 5. The development of shear layer behind the geometric 
node resembles the results of the smooth cylinder. In the saddle plane, the wake becomes wider and 
small-size spanwise vortices appear inside the formation region. In the nodal plane, however, the wake is 
relatively narrower and the rolling up of the separated boundary layer into spanwise vortices seems to 
suppress or delay the development of spanwise vortices in the near wake region. 



 Fig. 6 shows the top views of the wakes behind two wavy cylinders (λ /D = 1 and 2) at Re = 3000 
and Re = 10,000.  At Re = 3000, a low-energy slow-moving region exists between the trailing edge of 
cylinder and the vortices shed from the cylinder. The size of this dead zone is decreased as Re increases. 
The streamwire vortices start to appear at about 1D downstream. For the sinusoidal cylinder of λ/D = 2, 
the streamwise vortices are more clearly seen, compared with those for the model of λ/D = 1 and the 
smooth cylinder.  
 Lam et al. (2003)[7] mentioned that there is significant spanwise flow from the saddle planes toward 
the nodal planes and depicted surface streamlines of 3-D flow near the separation line. At separation 
points, except nodes and saddles, the approaching flow moves along the separation line and leaves it 
tangentially into the wake flow. Consequently, the shear layers shed from the region near the saddles 
considerably extend along the spanwise direction. On the other hand, the shear layer near the nodes 
shrinks and the separated shear layer is accelerated as the flow goes downstream. It is reasonable to 
predict the existence of spanwise vortices between the saddle and nodal planes. In order to determine the 
influence of geometric shape on the streamwise vortex formation and near wake turbulent structure, more 
experiments on the 3-D separation in the boundary layer is needed.  
 
4. CONCLUSIONS 
  Three dimensional flow structures of wake behind two sinusoidal cylinders were experimentally 
investigated. The sinusoidal cylinders reduce drag coefficient, compared with the smooth cylinder. The 
sinusoidal cylinder with λ/D = 2 shows the maximum 22% drag reduction at Re = 104. The wake structure 
varies significantly along the spanwise direction. In the saddle plane, the wake has larger velocity deficit 
and wider wake width, compared with the nodal plane. As the flow goes downstream, the flow in the 
saddle plane expands with entraining large amount of ambient fluid. However, the flow shrinks and 
accelerates in the nodal plane. The vortex formation length formed behind the sinusoidal cylinders is 
longer than that for the smooth cylinder. The elongations of vortex formation length also lead to drag 
reduction and suppression of flow induced vibration. The flow visualization results show clearly the 3-D 
vortex structure in the near wake region behind the sinusoidal cylinders.  
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Fig. 4 Streamwise turbulence intensity distributions  
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Fig. 5 Visualized flow behind the sinusoidal cylinder of λ/D = 2 in vertical cross-sections  
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Fig. 6 Side view of the wake behind sinusoidal cylinders (λ/D = 1 and 2)  
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ABSTRACT:  In  this  experimental  investigation,  we study  the  control  methodology to  suppress  the
vortex shedding behind three-dimensional  geometries.  The 3D flow configurations  investigated are (a)
uniform flow over a tapered circular cylinder (b) linear shear flow over a straight circular cylinder and (c)
Uniform flow over a straight circular cylinder with a step change in the diameter.  Such three-dimensional
vortex shedding patterns are in general dominated by the so-called cellular shedding patterns wherein the
shedding is organised in spanwise localised cells of constant frequency as there is a lack of coherence all
across the span. The control  methodology used is similar to that of Strykowski & Sreenivasan [1]  who
used a small (circular) control cylinder just outside the wake in the near wake region of a larger cylinder
which resulted in a complete suppression of vortex shedding of the larger diameter cylinder. In the case of
[1], both the main cylinder as well as the control cylinder is two-dimensional and it was argued by them
that the presence of the control cylinder resulted in reduced growth rates of disturbance in an otherwise
absolutely unstable wake in the absence of any control cylinder.  In the present case, it is found that the
vortex shedding pattern behind three-dimensional situations  as in (a) – (c) above could be likewise be
completely suppressed by placing a small control cylinder just outside the wakes at certain locations. This
is a very interesting result considering that the wake to be controlled is very strongly three-dimensional
whereas the control cylinder is two-dimensional in geometry. 

1. INTRODUCTION

Vortex shedding over 3D geometries such as a cone are known to be complex involving as
they do the so-called cellular vortex shedding phenomenon, wherein vortex shedding is known
to  occur  in  cells  of  constant  frequency.  This  can  be  easily  be  understood  by  the  local

dimensional argument  
D
Uf ~ , where  f is the frequency of shedding,  U is the velocity of the

fluid stream and  D is the local diameter. Now if there is a spanwise variation of the diameter
along the span as in 3D geometries such as a cone, it is conceivable that the frequency will
continuously vary along the span of  the cylinder  with the shedding more frequent  near  the
thinner end than the thicker end of the span. However, Helmholtz’s theorem requires that the
vortex tubes cannot end abruptly in the fluid.  This means the shed vortices that are varying
continuously in number (in a unit time) will have to connect among themselves in some fashion
across the span and this leads to the so-called cellular shedding (see [2]). Another variant of this
three-dimensional vortex shedding configuration is a linear shear flow over a straight circular
cylinder. In terms of finer details there are some differences between a uniform flow over the
cone and shear flow over a uniform cylinder; for example the shear has non-zero vorticity in the
oncoming  stream whereas  the  uniform flow over  a  tapered  cylinder  does  not  contain  any
vorticity in the oncoming stream. But in terms of the wake dynamics, these two situations tend to
be  treated  as  somewhat equivalent  from the  point  of  view of  the  wake structure  –  a  local

dimensional argument such as  
D
Uf ~  mentioned above would lead us to the conclusion that

both of these flows involve cellular shedding and the number of cells across the span would
depend on  the  taper  ratio  of  the  cylinder  or  an  equivalent  shear  parameter  to  describe  the
upstream velocity gradient  in the shear  flow. In  the present  work, we will  study the  vortex
shedding phenomena behind both these flows and seek to suppress the unsteady shedding by
using a control methodology. 

For the control, we follow the lead of Strykowski & Sreenivasan [1] who showed in their
classic  experiment  that  the  vortex  shedding  behind  a  straight  uniform  cylinder  could  be
suppressed by placing a much smaller control cylinder downstream of the main cylinder and
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slightly outside the wake. It was suggested by them that the control cylinder reduced the growth
rates  of  the  absolute  instability/global  modes  of  the  wake  and  in  some  cases  effectively
suppressed the shedding. Physically, this meant that the control rod diverted a part of the fluid
from the  wake of  the  main fluid  and  this  resulted  in  the  vorticity  smearing and,  when the
conditions were ‘right’, complete suppression of unsteady shedding also.  We extend the same
methodology of control to flow over cones in this study. But the main difference between the
present study and that of [1] is that the present study seeks to control a very strongly 3D vortex
shedding phenomenon but still  with a  2D control  cylinder as  in  [1];  in the case of [1],  the
frequency of shedding all across the span is a constant. i.e., a (nominally) 2D vortex shedding
phenomenon was quenched by a 2D control cylinder. For our three dimensional flows under
consideration,  one  could  then  expect  the  2D  control  cylinder  to  alter  the  growth  rates  by
different amounts along the span since the local Reynolds number is continually changing across
the span. As a consequence one could perhaps expect partial quenching over part of the span
whereas there is still shedding over the remaining part of the span due to the control rod. This
expectation turns out to be over conservative in that for certain values of Reynolds numbers
(based on the mean diameter or mean velocity as the case may be), vortex shedding over the
whole span is quenched in a dramatic fashion. The possible reason is that the control rod works
on the global instability modes and alter their growth rates all across the span even when the gap
between the cone and the control cylinder varies along the span; a naïve local Reynolds number
argument such as above does not take the global nature of the instability modes into account and
as a result leads to modest expectations from the control methodology.

In  the  present  work,  we have  investigated  the  vortex  shedding  and  its  control  for  the
following configurations: (a) uniform flow over a tapered circular cylinder (b) linear shear flow
over a straight circular cylinder (c) Uniform flow over a straight circular cylinder with a step
change in the diameter.  The last configuration (c) is meant to be a simplified picture of the wake
flow in configuration (a) as envisaged by the investigations of Lewis and Gharib [3].

In  the  next  section  we  will  describe  the  results  of  the  experiments  done  on  the
configurations (a)-(c). Finally, concluding remarks are made in the last section.

2. DESCRIPTION OF EXPERIMENTAL RESULTS AND DISCUSSION

The experiments were conducted in an open circuit wind tunnel, which has a test section of
300mm300mm  cross  section  and  3.2m  long.  Two  end  plates  were  used  to  arrest  the
meandering of the vortex tubes in the tunnel wall boundary layers. The oncoming freestream
velocity was typically of the order of 0.5 m/s. This was measured by placing a uniform cylinder
downstream and  measuring the  shedding  frequency in  its  wake by  using single  component
hotwire anemometry; the freestream velocity was then calculated by using the universal relation
St  = 0.212 – 4.5/Re, where Re =Ud/, St=fd/U, with U and d being the freestream velocity and
diameter respectively (see [4]).

The velocity fluctuation in the wake was measured by using a single component constant
temperature hotwire anemometry. 

The linear shear of the oncoming flow in configuration (b) is produced by placing a curved
gauze upstream of the main cylinder; since the pressure drop across the gauze changes with the
height, the resulting velocity in the wake downstream resulted in a shear flow and by a judicious
choice of the gauze curvature along the height, a linear shear flow of any desired shear rate can
be generated [5]. 

Flow visualisations in the wake were done with smoke flow released from a rake (which is
encased in an aerofoil so that the rake does not produce its own vortex shedding) upstream of
the main cylinder for cases (a) and (c). Smoke from incense stick (agar bathi) was collected in a
container and passed through the rake and this resulted in a homogeneous good quality smoke
visualisation. For case (b), the presence of the gauze presented certain difficulties with flow
visualisation using this  technique.  Hence smoke flow visualisation using paraffin oil  over  a
heated nichrome wire was used for this case. However, this technique of flow visualisation is
especially plagued with problems of buoyancy due to low speeds of convection involved. As a
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result, the quality of flow visualisation picture is not as impressive as that obtained by using the
first technique (using a smoke rake encased in an aerofoil shape). 

In the following, some typical results for cases (a) – (c) are presented.

Case (a): Tapered Cylinder in a uniform flow.
The dimensions of the cone are: spanwise length (l ) is 266 mm, smallest diameter ( sd

) is 4 mm, largest diameter ( ld ) is 9 mm and the taper ratio (
sl dd

l


) is 53 – a fairly steep

cone. The Reynolds number of the flow (based on the mid span diameter) is about 72. When
there is no control cylinder the vortex shedding is present as can be seen from the smoke flow
visualisations below. Figure 1a shows the top view and figure 1b shows the spanwise view of the
phenomenon of low Reynolds number vortex shedding over the cone. It can be seen from figure
1b  that  this  is  a  very complex flow when compared  to  a  vortex shedding behind a straight
circular cylinder. For the cone case, there is a dramatic variation of frequency across the span
with cross-stream linkages of vorticity in conformity with Helmholtz’s theorem. (As compared
to the cone case, where there are many cells of shedding, a straight circular cylinder in a uniform
flow case there will be just one cell, ignoring the end effects).

    

      Figure 1a Shedding – Top view          Figure1b Shedding – Spanwise view

Now following the lead of Strkowski & Sreenivasan[1], we introduce a much smaller control
cylinder outside the wake of the main cylinder. The control cylinder has a constant diameter
(=1.2 mm) all across the span (=266 mm) – i.e., it is 2D. The control cylinder is placed outside
the wake such that its streamwise location dx 2  times the mean diameter of the cone and the
normal distance dy 5.1 ,  where  d is the mean diameter of the cone. Figures 2a & 2b below
respectively show the top view and the spanwise view of the resulting flow pattern with the
introduction of a control cylinder. It can be very clearly seen that there is complete quenching of
the vortex shedding phenomenon all across the span.
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                                                                                    Control cylinder                 
  Figure 2a: Quenching – Top view             Figure 2b: Quenching – Spanwise view

The hotwire measurements corresponding to the above were also performed and the spectra of
the  steamwise  velocity  fluctuation  component  for  various  spanwise  positions  are  presented
below in figs 3a –b for the uncontrolled and controlled cases respectively. It can be seen from
figure  3a  from the  power  spectra  of  the  streamwise velocity fluctuations  that  the  dominant
frequency (due to shedding) varies continually along the span in conformity with the picture
depicted by figure 1b. When the control rod is introduced in the wake, there were absolutely no
peaks in the spectra confirming complete quenching of vortex shedding all over the span and
this is shown in figure 3b below.
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Figure3b: Spectra of cone wake -Quenching

The control methodology was successful in completely quenching the shedding in the main cylinder
wake over a range of the control rod positions but the measurements at other locations or the domain of
influence of the control rod are not presented here for lack of space.

Case (b): Linear Shear flow over a straight circular  Cylinder

As mentioned earlier, an oncoming linear shear flow was produced by using a curved gauze and a typical 
 

     Figure 4: Linear shear flow – velocity variation with height

measured profile of velocity is shown in figure 4.  The shear rate, defined as 






dz
du

Uave
1

 , was

0.016 for this case. The velocity was measured using an improvised vortex shedding meter and
the details of this method will be published elsewhere.

The spanwise view of flow visualisation of the wake of a circular cylinder in this shear
flow  is  presented  below  in  figures  5a  and  5b  for  the  uncontrolled  and  controlled  cases
respectively. From figure 5a it can be seen that in the uncontrolled case, the vortex shedding is
organised in cells similar to that in flow over cone. The control rod was placed at the location

dx 5.1 , dy 5.0 , where d is the diameter of the main cylinder. It can be seen that yet again for
this 3D case also there is complete quenching of shedding due to the control rod placement. The
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spectra of streamwise velocity component in the wake at different spanwise positions is shown
in figure 6 by way of corroborating the cellular shedding structure shown if figure 5a.

Figure 5a: Shear flow wake - Shedding                           Figure 5b Shear flow wake wake-Quenching 

Figure 6.  Spectra of streamwise velocity component in shear flow wake at various spanwise
locations

Case (c): Uniform flow over a straight circular  cylinder with a step change in diameter

 

  Figure 7a: Stepped cylinder wake - Shedding       Figure7b Stepped cylinder -Quenching 
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As a final case, we present the spanwise view of the wake of a stepped cylinder in a uniform
flow for the uncontrolled and controlled cases respectively in figures (7a) and (7b) above. The
diameter ratio is 1.1.  The control rod was placed at  28.1 dx  and  21.1 dy  ,  where  2d is the
diameter of the larger side of the stepped cylinder. The Reynolds number based on the larger
diameter is about 72. Again the results are similar to those in cases (a) and (b) viz., presence of
cellular vortex shedding in the absence of any control and complete quenching of shedding with
control. 

Discussion
The success of this control methodology in the 2D experiments of Strykowski and Sreenivasan
[1]  was attributed  by them to  the  quenching of  the  growth rates  by the  control  rod  in  the
otherwise absolutely unstable modes of the wake. 
For the 3D experiments as in the present study it may at first sight appear surprising that a 2D
control cylinder should be successful in suppressing a very complex 3D shedding phenomenon
as  vorticity smearing due  to  the  control  rod  (envisaged  in  the  2D scenario  in  [1])  may be
expected to be non-uniform all over the span in a 3D geometry. However, a vortex shedding
phenomenon in a 2D flow is known to be dominated by the so-called global modes – these are
instability modes with a zero group velocity and the same frequency all over the wake. It is also
well known from studies which use model equations (such as Ginzburg Landau equation) to
study  the  vortex  shedding  phenomenon  with  spanwise  variations  in  geometry  [6],  that  a
spanwise shear weakens the global mode structure. Hence the presence of a control rod in a
three-dimensional wake perhaps damps the growth rate in an already weakened instability mode.
This might perhaps explain the success of a 2D control  cylinder in suppressing a 3D vortex
shedding as in cases (a) –(c) discussed above.

3. CONCLUSIONS

A 2D  control rod placed in the wake of a three dimensional vortex shedding configuration was
found to completely suppress the unsteady shedding pattern. This is attributed to the weakening
of the so-called global instability modes (which are already weakened by an imposed shear due
to the 3D geometry)  further by the control rod and when the conditions are just ‘right’  leading
to complete curbing of growth rates thereby resulting in suppression of shedding altogether.
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ABSTRACT: The development of forced wavelength Görtler vortex flow was investigated in the boundary layer of a 
concave surface of 2.0 m radius of curvature.  The wavelength of the vortex flow was forced by the presence of 13 
vertical perturbation wires located upstream of the concave surface leading edge.  The measured streamwise velocity 
contours reveal the spanwise structure in the streamwise region in which the mushroom shape structures are coherent 
and dominating the flow.  The growth of the secondary instability that is associated with the inflectional profiles in 
the spanwise directions which produce the temporal velocity fluctuations, can be seen in the contours of u′rms that has 
been normalized by the free-stream velocity U∞ in the y-z plane.  It is found that two-peaks in the u′rms distribution are 
located at the sides of low speed regions at all streamwise locations.  This implies that the vortices are vulnerable to a 
secondary instability which is governed by the inflectional velocity profiles in the spanwise direction. 

1. INTRODUCTION 
Counter-rotating streamwise vortices is one of the most prevalent eddy structure found in both 

transitional and turbulent bounded shear flows. The development and breakdown of counter-rotating 
streamwise vortices generated via a Görtler instability mechanism has been used to experimentally model 
the eddy structures found in transitional and turbulent flat-plate boundary layers.   

The growth of the disturbance velocity generated by Görtler instability mechanism is used to 
categorize the linear or the non-linear region of the flow field.  As the disturbance velocities grow above a 
few percent of the free-stream velocity U∞ , nonlinear effects become important and the linear equations 
no longer accurately predict the disturbance evolution. [1] Accordingly the flow is considered in the 
nonlinear region.  It is indicated by the formation of the horseshoe vortices that are formed from the wavy 
shape structure observed in the iso-velocity structure at the y-z plane.  Further downstream these 
horseshoe vortices will form the mushroomlike structures.  These coherent structures will be destroyed 
farther downstream by secondary instabilities and fine-scale turbulence development. [2] However, there 
will be a finite region in which the mushroomlike structures dominate the flow.   

The secondary instability manifests itself either as varicose or sinuous transverse oscillation mode.  
The varicose mode is responsible for developing fluctuations on the spanwise structure and it coincides 
with the regions of high shear at the mushroom hat. [3] It looks like a small horseshoe eddies formed 
between two neighbouring vortices travelling in the streamwise direction.  This horseshoe vortex street 
appears at irregular intervals periodically being replaced by a secondary instability called the sinuous 
mode.   

This sinuous mode manifests itself as an unsteady meandering of the vortices and associated with 
the inflectional profiles, which produce the temporal velocity fluctuations. It is driven by the spanwise 
gradient near the mushroom stem. [3]   The sinusoidal transverse oscillations of the streak-lines are an 
example of sinuous instability mode and can be the most important in the transition to turbulence.  A 
global energy balance study conducted by Yu and Liu [4] verified the amplification rates obtained from 
secondary instability analysis and confirmed that the sinuous mode would dominate. 

The rapid increase in temporal fluctuations takes place in the region where the spanwise structure 
begins to smear out.  This phenomenon can be found downstream of the location where the spanwise 
structure collapses very quickly.  It is related to the increased mixing due to the onset of turbulence.  The 
growth and breakdown of the vortices caused by the Görtler instability are quite similar to those found in 
the transitional and turbulent flow field [5].  



The aim of the present study is to show that the growth of the secondary instability associated with 
the inflectional profiles that produce the temporal velocity fluctuations in the non-linear developing 
forced wavelength Görtler vortex flow.  The rms-streamwise velocity u′rms structures that have been 
normalized by the free-stream velocity U∞ together with the corresponding iso-velocity structures will be 
presented to provide a clearer picture of the non-linear development of forced wavelength Görtler 
vortices. 

2. EXPERIMENTAL DETAILS  
The experiment was carried out in a 60o curved test section with a rectangular cross-section of 0.15 

m x 0.60 m, connected to a low speed, blow down type wind tunnel is used to carry out the experiments.  
A smooth concave test surface of 2.0 m radius of curvature is mounted inside the perspex (plexiglass) 
curved test section at a distance of 0.05 m from its bottom surface (Fig.1). Thirteen perturbation wires 
with diameter of 0.2 mm are positioned at 10 mm upstream of the leading edge and the distance between 
each wire is 15 mm. Fine mesh screens were installed at the inlet to provide uniform flow in the test 
section with free stream turbulence levels of about 0.35 % for the free-stream velocity range of 1.5 m/s to 
9 m/s. 

A single hot-wire probe of special design for boundary layer measurements is used to carry out 
mean and fluctuating velocity measurements in the boundary layer.  This probe was operated in a 
Constant Temperature Anemometer (CTA) mode, which is coupled to a signal conditioner.  The signal 
was low passed filtered at 3000 Hz and sampled at 6000 Hz for the duration of 21 seconds.  The data 
collected were digitized using the A/D (analog to digital) converter card DT3016, which is installed in 
PC.  The data was further analyzed using the HPVEE software. 

For the hot-wire calibration, a pressure transducer that has been calibrated using a micro-manometer 
was used in conjunction with the Pitot-static tube located in the free-stream. The King’s law provides the 
basis for the prediction of the forced convection heat transfer from a hot wire. During the measurements 
along the spanwise direction the Pitot-static tube was positioned in the free-stream.  It was connected to 
the pressure transducer to monitor the local free-stream velocity.  Both hot-wire probe and Pitot-static 
tube were mounted on a traversing mechanism. Two stepper motors control the movement of the 
traversing mechanism along the y and z directions with an accuracy of ± 0.01 mm.  The measurements 
were carried out in the y-z plane with the step size of 1-mm along the z direction. 

3.  RESULTS AND DISCUSSIONS 
Figures 2 (a) - (f) show the contours of ∞UU in the cross-sectional (y-z) plane at 6 streamwise (x) 

locations (at x =200, 500, 600, 700, 805, and 904 mm).  The corresponding Blasius boundary layer 
thickness δ is indicated on the ordinate for each streamwise location.  To smooth the iso-velocity 
contours, Tecplot software was used.  By assuming that the second derivative normal to the boundary is 
constant, it results in the data being smoothed near the boundary.  To include the effect of rounding out 
peaks and valleys rather than eliminating them, 5 points are chosen to be the number of smoothing passes 
to perform with the relaxation factor for each pass of smoothing as 0.5.  The presence of the wake 
velocity profile behind vertical perturbation wires gives rise to a spanwise modulation of streamwise 
velocity U with the period similar to the spanwise spacing between the wires.  The high velocity regions 
(downwash) occur in the spacing between wires at which the boundary layer thickness is thinner than that 
in the low velocity regions (upwash) that occur downstream of each vertical perturbation wire. 

It is shown in Figs. 2 (a) – (f) that at x = 200 mm from the leading edge, the contours are wavy in the 
spanwise (z) direction, which indicate the occurrence of Görtler vortices at this location where Gθ = 
2.393.  The wavy shapes become more pronounced as the flow developed downstream indicating the 
amplification of the vortices.  Furthermore these vortices will evolve to form the horseshoe vortices.  The 
transformation of the horseshoe vortices that propagate downstream into the mushroom shape structure 
before breaking down, is the consequence of the nonlinear growth of Görtler vortices. It shows the 
occurrence of the varicose mode instability as a secondary instability [2]. The mushroom shape vortices as 
the spanwise structure is clearly depicted starting at x = 700 mm, while at x = 904 mm the structure starts 



to decay.  The breakdown of these spanwise structures could be attributed to the increased mixing due to 
the onset of turbulence.  The mushroom shape structures as shown in Figs. 2 (d)–(f), reveal the structure 
of finite amplitude Görtler vortices, and identify the streamwise region in which the mushroom shape 
structures are coherent and dominating the flow.  The development of the mushroom shape structure is 
due to the strong nonlinearities in the cross-sectional y-z plane [2].  

The corresponding distribution of the temporal velocity fluctuations in y-z plane are presented in 
Figs 3 (a) – (f) by plotting the u′rms that has been normalized by free-stream velocity U∞.  Unlike the 
contours of ∞UU , the temporal velocity fluctuations contours are not smoothed.  After comparing these 
figures with those presented in Figs. 2 (a) – (f), it is shown that the developing fluctuations are associated 
with the low-speed streaks, since the presence of two peaks in the u′rms distributions are located on the 
sides of the low speed regions.  This result led to the conclusion that the vortices are susceptible to a 
secondary instability which is governed by the inflectional velocity profiles in the spanwise direction.  As 
the breakdown of the spanwise structures is approached, a secondary peak in the u′rms develops near the 
wall as can be seen in Figs. 3 (d) – (f).  It has a smaller scale but ultimately attains the highest amplitude 
in the evolution of the streamwise vortices as reported earlier by Swearingen and Blackwelder [6]. The 
unclear structures near the wall in the u′rms contours could be due to inadequate probe resolution in this 
region.   

4. CONCLUSIONS 
The growth of the mushroomlike structures in the non-linear developing forced wavelength Görtler 

vortex flow had been studied.  The streamwise mean velocity contours reveal the structure of finite 
amplitude Görtler vortices, and the streamwise region in which the mushroom shape structures are 
coherent and dominating the flow. The development of these mushroomlike structures is caused by the 
strong non-linearity in the cross-sectional y-z plane.  The contours of u′rms that have been normalized by 
the free-stream velocity U∞ show the growth of the secondary instability that is associated with the 
inflectional profiles in the spanwise directions which produce the temporal velocity fluctuations.  It is also 
shown that the vortices are susceptible to a secondary instability which is governed by the inflectional 
velocity profiles in the spanwise direction.   
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Fig. 1 Sketch of the wind tunnel, curved test section and concave test surface (all dimensions are in mm). 
 

 
Fig. 2 Mean streamwise velocity (U/U∞) contours showing the evolution of Görtler vortices in boundary layer flow 

on a concave surface of 2.0 m radius of curvature at free-stream velocity U∞ = 3 m/s. 



 

Fig. 3 u′rms/U∞ (in %) contours showing the growth of the secondary instability associated with the inflectional 
profiles in the spanwise directions at free-stream velocity U∞ = 3 m/s. 
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ABSTRACT: The paper presents the experimental study of forward sweep on the performance and stall margin of a 
low speed axial flow compressor. The performance and three-dimensional flow behind 10o forward sweep and 20o 
forward sweep rotors are compared with baseline unswept rotor. Tip-chordline sweep is employed for the current 
investigation. The results indicate that low sweep angle could improve the performance in terms of pressure rise, 
whereas an increase in sweep angle brings down the pressure rise from the rotor. The peak efficiency of forward 
swept rotors is more than the unswept rotor and well away from the stall to be ideal for practical applications. The 
rotor exit flow measurements revealed that the forward sweep causes the flow to shift towards the hub 
 
1.  INTRODUCTION 
The concept of sweep was originally developed and applied for aircraft wing designs where it was used to 
reduce drag and flow losses at transonic speed.  Stress considerations prohibited the application of 
forward sweep to high-speed compressors for decades after the concept was proposed, though the 
advances in the material considerations and accurate stress predictions made it possible at present.  
 
The term sweep refers to the tilting of blade sections in the direction of chord, whereas dihedral refers to 
the tilting of the blade sections perpendicular to the direction of the chord. According to Smith [1], blade 
sections should be cut by surfaces that are tangent to the axisymmetric stream surface of the meridional 
flow and these cross sections should be viewed parallel to the stacking line of the blade. This procedure 
ensures that the resulting blade sections are most nearly comparable to the design criteria. In the present 
programme, a tip-chordline sweep is employed for the investigation, where each blade section from hub 
to tip is moved in the direction of tip-chord in such a way that the movement is zero at the hub and 
progressively increasing along the span to be maximum at the tip. Schematic diagram in Fig.1 gives 
sweep, dihedral and skew angles for an axial flow compressor. 
 
The main objective for which the concept of forward sweep is evolved and applied for is to improve the 
operating range and most importantly the stall margin characteristics of the axial flow compressor. It is 
well known that the operating range of the axial compressor is low at high speeds.  
 
2.  EXPERIMENTAL SETUP AND INSTRUMENTATION 
The experimental setup (Fig. 2) is a single stage axial flow compressor consisting of a rotor followed by 
downstream guide vanes. The rotor is designed to give a forced vortex flow at constant exit absolute flow 
angle, and a specific work of 425 m2/s2 at a flow coefficient of 0.6. The rotor consisted of twelve blades 
with a tip diameter of 400 mm and a hub diameter of 200 mm fixed on an aluminium hub. The drive to 
the compressor is given by a 7.5 kW, 2900 rpm AC induction motor. The mass flow through the 
compressor is regulated by means of a throttle control mechanism provided at the inlet. The mass flow 
through the rotor is calculated from the mass averaged axial velocity at the rotor inlet.  
 
3. EXPERIMENTAL PROCEDURE 
Traverse at the rotor inlet was done with the help of three-hole probe whereas that at the exit of rotor was 
done with the help of five hole probe. Five hole probe was needed in order to study the three dimensional 
flow pattern behind the rotor since the radial flow become more predominant at lower flow rates.  These 
probes were calibrated in a non-nulling mode in the calibration tunnel facility available in the laboratory. 



All the measurements were taken with the help of Furness Controls,U.K. make micromanometers 
(FC012).  
 
The probe traverses were done at close intervals from hub to tip. The wall static pressure from the casing 
wall was also taken. These flow measurements were carried out at different throttle positions at a constant 
speed of 2000 rpm. From the calibration chart, true total pressure, true static pressure and flow direction 
were determined. The temperature and pressure at the time of experiment was also noted down to 
calculate the density of air. 
  
The average total pressure rise across the rotor is an indicative of the amount of energy transferred from 
the rotor. This was non-dimensionalized by the product of density and square of tip speed to get energy 
coefficient ψ. The mass averaged meridional velocity at the rotor inlet was non-dimensionalized by the 
tip speed to get the flow coefficient φ 
 
4. RESULTS AND DISCUSSION 
4.1  Comparison of Performance 
The comparison of performance (Fig.3) reveals that 10P

o
P forward swept rotor has developed the highest 

pressure rise among all the three rotors tested. However, when the sweep angle was further increased to 
20 P

o 
Pforward sweep, the pressure rise is reduced below the level of the baseline rotor. An observation of 

this kind has not been reported so far. Investigations by Wadia et al.[2], Mohammed and Raj [3] have 
observed high pressure rise with the forward swept rotor, while Helming[4], Beiler et al.[5] and 
Yamaguchi et al. [6] have observed pressure reduction with forward sweep.  
 
It is known that the loading of a swept airfoil is theoretically reduced according to the cosine of sweep 
angle. Assuming valid, 10P

o
P forward swept blade would be developing a pressure rise 1.5% lower that the 

unswept blade and 20 P

o
P forward swept blade would be developing a pressure rise 6% lower than the 

unswept blade. This could be the reason behind the low total pressure rise developed by the 20P

o
P forward 

swept blade. But for an axial turbomachine, the spanwise flow caused by swept blades will be modified 
by hub and casing and hence the loading of a swept blade would not gradually decrease along the span as 
the theory of infinitely long airfoils predict (Kuchemann [7] and Thwaites [8]).  Thus with rotors 
employing low sweep angles, the pressure rise could be even higher than the unswept rotor. 
 
It could be seen that 10P

o
P forward sweep though increased the operating range has not increased the stall 

margin. Whereas, 20P

o
P forward sweep has resulted an increased operating range and stall margin but at the 

expense of pressure rise. This shows that a high angle of forward sweep is necessary to achieve a high 
stall margin. On the other hand,  pressure rise will be low for rotors employing high sweep angles. 
 
4.2  Comparison of efficiency 
The efficiency (Fig.4) of 10P

o
P forward swept rotor is higher than the unswept rotor by about 3% at design: 

φ = 0.60, whereas 20 P

o
P forward swept rotor improved the efficiency by about 4.2% from the baseline rotor 

at this flow rate. Also, the peak efficiency of the unswept rotor is close to stall. On the other hand, both 
forward swept rotors gave maximum efficiency to the right of stall point. This is advantageous, as it is 
possible to operate the compressor near the best efficiency point without getting stalled. Towards stall 
region, the efficiency of swept rotors reduces with 20 P

o
P forward swept rotor showing low efficiency 

values. 
. 
The shift of streamlines towards the hub will make the flow pattern uniform in a forward swept rotor by 
increasing the flow near the hub and decreasing the flow near the casing.  The radial distribution of blade 
loading becomes more uniform with midspan sections taking a major portion of blade work in forward 
sweep.  The improvement in efficiency is due to these improved flow conditions within the forward swept 
rotor. 
 
 



 
4.3  Total pressure rise coefficient 
The 10 P

o
P forward swept blade showed high total pressure rise almost uniformly from the hub to the tip, 

Fig. 5.   With 20 P

o
P forward sweep, the high total pressure rise is observed only near the hub at high flow 

coefficient of φ =  0.71. At low flow coefficient of φ = 0.56  this is not observed.  Near the casing, the 
total pressure rise of the 20 P

o
P forward swept rotor is lower than the unswept rotor and this is more 

prominent at φ = 0.56.  
 
4.4  Axial velocity distribution 
The axial velocity distribution at the exit of the rotor is plotted for φ = 0.56 and φ = 0.71 in Fig. 6.  The 
design of the blade is such that axial velocity is constant from hub to tip. At all flow coefficients, the axial 
velocity is less at the hub and increases towards the tip sections. This radial gradient of the axial velocity 
increases as the flow rate is reduced.  This clearly shows that the radial shift  of streamlines from the 
original axisymmetric stream surface is higher at low flow rates. 
 
The axial velocity distribution for the swept rotor is more uniform from hub to tip as compared to the 
unswept rotor. Axial velocity near the hub is more with forward sweep. Near the tip, the axial velocity of 
the swept rotors is lower than the unswept rotor. This redistribution of axial velocity at the exit of swept 
rotors shows that forward sweep causes flow to deflect towards the hub. Since the streamline shift is 
expected to follow this trend, the result of this flow redistribution will be to reduce the boundary layer 
accumulation near the casing region.  The high stall margin observed in 20 P

o
P forward swept rotor is a 

manifestation of this aspect. 
 
4.5  Tangential velocity distribution 
Tangential velocity distribution (Fig.7) at rotor exit is indicative of the energy transfer from the blades. 
The tangential velocity magnitudes of the 10P

o
P forward swept blade are higher than the unswept blade in 

almost the entire span of blade. This is in agreement with the total pressure rise distribution. Tangential 
velocity is more near the hub with 20P

o
P forward swept rotor at  φ = 0.71, and at  φ = 0.56 it is low. At the 

same time, tangential velocity magnitudes near the casing are low with the 20P

o
P forward swept rotor at 

these two flow coefficients, as originally seen from the total pressure rise distribution. 
 
4.6  Radial Velocity distribution 
From the radial velocity distribution, Fig. 8, it could be inferred whether the nature of streamline flow 
within the rotor is towards the hub or casing. At  φ = 0.71, the radial velocity of forward swept rotors is 
lower than the unswept rotor, with 20 P

o
P forward swept rotor showing the least magnitudes. On the other 

hand, at  φ = 0.56, radial velocity magnitudes of the 10 P

o
P forward swept rotor is higher in the midspan as 

compared to the unswept rotor, whereas 20P

o
P forward swept rotor still shows low values of radial velocity 

in almost entire span of the blade. 
 
This means that the effect of forward sweep to cause a downward flow towards the hub is more 
prominent at  high flow coefficient. As the flow rate is reduced, the boundary layer growth on the suction 
surface becomes thicker, and the ability of forward sweep to induce flow towards the hub will be 
dominated by the centrifugal effects.  In order to achieve high stall margin, a high angle of forward sweep 
is necessary. 
 
5.  CONCLUSIONS 
Low sweep angle could improve the pressure rise, whereas a high sweep angle results in low pressure rise 
from the rotor.  A high angle of forward sweep is necessary in order to achieve a high stall margin 
characteristic.  Forward sweep results in improved stall margin and efficiency, but in this attempt total 
pressure rise has to be sacrificed.  Forward sweep reduces the pressure rise near the casing and improves 
the pressure rise near the hub to make the total pressure rise uniform from hub to tip.  Axial velocity with 
forward sweep is low near the casing and more near the hub to make the mass flow through the blade 
channel uniform from hub to tip. This also shows that the effect of forward sweep is to induce the flow 



towards the hub.  Forward sweep effects diminish at low flow rates suggesting the need of high sweep 
angles. 
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Fig. 1  Schematic of the test set-up 
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Fig. 1 Sweep, dihedral and skew angles in an axial flow compressor (Beiler and Carolus,   (5)) 

λ - Sweep 
ν - Dihedral 
σ - Skew 
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1. Rotor;  2.   Collar;   3.  Elliptic Nose Cone ;  4.  Aerofoil 
Support Struts;  5.   Stator;  6.  Tie Rods;  7. Discharge 
Nozzle;  8.  Hub Extension ; 9.  Impeller  Shaft;  10.  Rigid 
Flanged Coupling;   11.  Probe Traverse Mechanism 

 
All Dimensions are in mm   

Fig. 2  Schematic of the test set-up 
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                                Fig. 6  Variation of axial velocity coefficient at rotor exit 
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                               Fig. 8  Variation of  radial velocity coefficient  at rotor exit 

                 Fig. 7  Variation of  tangential velocity coefficient at  rotor exit 
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ABSTRACT  Wing in Ground effect vehicle “Aero-Train” which is invented and developed 
by our group and floats in a U-shape guideway at 500hkm/h with ultra-low energy 
consumption.  We are in the second phase development of the Aero-Train using old 
MAGLEV (Japanese Linear Motor Car system) test course in the city of Hyuga, Miyazaki 
prefecture.  Presently, we are doing running test using newly developed ART002 model 
which runs at around 120km/h, floating height of about 5cm.  The model is being thrust by 
two propellers aside driven by 5 kW DC motors.  Electricity is fed by the pantograph 
system equipped at each vertical rear wings and slides along two power cables equipped at 
each vertical wall.  The electricity is generated by solar cells and wind mills equipped at the 
roof of the center building.  Therefore, the Aero-Train system is virtually Zero-Emission 
high speed vehicle.  The details of the research will be presented in the paper.      
 
Key words: Environment friendly technology, Transport system, High speed, Energy 

 minimum, Aerodynamic force, Wing-in-ground effect 
 
 
1. FEATURE OF THE AERO-TRAIN  
   The final goal of an Aero-Train will be 
3-car system and glides at about 10 cm off 
the ground at a speed of 500 km/h.  Figure 1 
shows the image sketch of the Aero-Train1).  
It has a maximum passenger capacity of 350.  
The bodies have wings, electric power is 
gathered from the tips of the vertical left and 
right wings using a pantograph system, and 
ducted fans are used for propulsion.  The 
body floats (by wing in ground effect) over a 
U-shape guideway because the air acts as a 

 
Fig.1 Image sketch of the Aero-Train 

(3 cars, V=500km/h) 



cushion supporting the body and wings off the surface, and left and right walls.  There is a 
guideway but no rails, and wheels are only used when starting up and stopping.  There are 
wings but the vehicle cannot fly. It only floats about 10 cm off the ground. 
   The convenient, comfortable means of high speed transportations human beings have 
invented so far have all consumed large quantities of fossil or atomic fuels.  As a result, 
they produce large amount of carbon dioxide or radioactive wastes, and exacerbate the 
problems of global warming and environmental hormones.  If things continue like this, it is 
obvious that our descendants will be deprived of a safe environment in which they can live 
with peace of mind.” 
   The aims of present project are: (1) to develop a transportation system running on as 
little energy as possible; (2) to develop a system allowing composite use of natural energies 
with a stable supply. 
   Pelicans and other large birds who are migratory birds and flies such a long distances 
use the ground effect, that is the air interference between the mountains, ground or water 
surface and their wings to fly (glide) in a way that consumes little energy.  The Aero-train 
uses the same effect to reduce energy consumption as much as possible.  Whereas linear 
motor cars use magnetic repulsion force, the Aero-train hovers using the air repulsion 
resulting from this ground effect.  The Aero-train can travel on less energy than the 
“shinkansen” (bullet train), planes or linear motor cars.   

In the past, natural energy was overlooked because of the low energy density and 
changeable nature, but in the future it is necessary to use natural energy effectively.  For 
this reason it is important to develop new systems to collect, store and offer a stable supply 
of various natural energies. 

 
2. RUNNING TESTS IN MIYAZAKI  
   Basic research on the Aero-Train was completed in 1998, and running tests to 
corroborate the concept began in 1999 at the former site of the “Miyazaki Maglev Test 
Center” owned by JR-Soken (Railway Technical Research Institute; RTRI).  We use the 
abandoned guideway of the linear motor car, which is now tested in Yamanashi Prefecture 
using new and longer guideway.  At first phase, we succeeded in achieving a stable 
levitated run at 55～85 km/h using a car ART-001 pushing by a car behind2).  A new second 
phase model, called “ART-002”, was completed in January 2002.  Test runs with two 
gasoline engines began in March, followed by tests with a DC motor with nickel-hydrogen 
cell in July, and a DC motor with lithium-ion batteries in October. 
   The ART-002 measures 8.4 meters in length and 3.4 meters(0.8m for fuselage) in width, 
has a chord length of 1.5 meters and a total weight of about 400 kg.  Figure 2 shows the 



  
 

Fig.2 Running test using the second phase model ART002 
(V=120km/h, W=400kg) 

dimensions in the drawing and the running test picture of the model.  Fully autonomous 
levitated running is achieved at around 120 km/h, about 5 cm off the ground.  The drag to 
lift ratio at present is up to 15.0.  The model is 2/7 actual size in terms of the width, about 
1/5 actual size in terms of speed.  Figure 3 shows the measured data while running.  Speed 
and floating height are set at 120km/h and 5cm.  From these data, it is seen that some 
oscillations in roll and pitch motions.  Figure 4 shows the FFT analysis of those data3).  
Peaks at around 0.7 Hz in the case of roll and 2.0 Hz in the case of pitch are seen.  Those 
oscillations might be caused from incomplete control system and program.  Therefore, it is 
needed to develop more accurate and 
elaborated feed forward control 
technique. 
     Another important issue need to 
be solved is to increase the lift-to-drag 
ration of the Aero-Train.  Presently it 
is around 15.  However, our target is 
25 and we need to increase much more.  
One of the aerodynamic problems is 
the wing to wing boundary layer 
interaction as shown in Figure 5.  
Boundary layer separates at the upper 
trailing edge region where broken line 
is drown in the picture.  Those 
separation of the flow seems to be one 
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of the major reason why large 
aerodynamic drag force exists.  
Therefore, it is important to control 
those flow separation actively. 
 
3. AIMING AT THE THIRD PHASE 
DEVELOPMENT AND 2020  
   In Phase 3 we will completely 
alter the entire 7-kilometer old test 
course of the MAGLEV train for the 
Aero-Train and aim at a top speed of 
350 km/h with a passenger capacity 
of 6.  We could accomplish within 5 
years if we could get budget for this.  
However, presently we don’t have any promising offers.   

0 1 2 3 4 5

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

 

 

P
o
w
er
 (
ar
b
it
ra
ry
)

Frequency(Hz)

 Pitch
 Roll
 Yaw

 Fig.4 FFT analysis results of the data 

   The advantages and problems involved in introducing the Aero-Train as follows.  
Aero-Train offers ultra-low energy consumption flying.  It is safe, a plane that does not 
crash, a ‘shinkansen’ that does not derail.  It is meant as a vehicle that can travel at a speed 
of 500 km/h with as little energy as possible.  In the past the evolution of vehicles has been 
restricted by the history of technology, and if we evaluate vehicles in terms of the 
environment they are all fail.  One problem of the Aero-train is that active control to reduce 
horizontal and vertical disturbances generated at high speeds by air repulsion, which is 
weaker than magnetic repulsion, is still an unknown technology.  Furthermore research is 
currently underway into technology for obtaining electric power from the electric lines on 
the guideways using a pantograph. 
   The Aero-train will allow high speed travel at far lower costs than other systems like 
linear motor car.  There are still many issues to be solved before it becomes into reality, but 
this technology is unique in the world, and the Aero-train is truly the means of land travel 
we require in 21st century.  We hope it will move forward as a national project. 
 
4. GROUND EFFECT  
   Ground effect is the aerodynamic force which acts to the aerofoil interacted with the 
ground surface.  It can be a plus or minus depending on the attitude of the aerofoil or a body.  
The minus ground effect(down force) has been used as a matter of course in Formula-1 car 
racing, but plus ground effect was first used in the field of aircraft.  The purpose is to use 
the ground or water surface effect when flying low so as to save fuel.  One famous example 



is the Ekuranopuran of the former Soviet military.  The U.S. military also had a project 
called “Pelican”.  It is reported that a gigantic plane with a transport capacity 7 times that 
of a 747 could fly on half the fuel at an altitude of 20 to 50 feet (6 to 15 meters).  Research 
on hydro-gliding aero-hydroplanes are currently being conducted in Russia4), Germany, U.S. 
A. and China.  Ground effect is the one of possible effect which can be effectively utilized for 
improving energy efficiency in general energy systems.   
 
5. ENERGY SUPPLY SYSTEM  

The Aero-train can be run solely on natural energy.  Because energy consumption is 
extremely low structurally, a truly clean-energy mass transportation system could be 
established using electricity generated from solar cells and windmills.  The idea calls for 
setting up wind farms along the guideways, covering the guideway’s roof entirely with solar 
panels, and supplying electricity from the vertical wing tips by pantograph.  The two lines 
will be built one on top of the other to reduce land purchasing costs.  Hydrogen obtained 
through electrolysis will be stored under the guideways, and fuel cells will be activated on 
cloudy days to provide the necessary power.  One remaining issue will be a noise problem in 
the area around the tracks. 
 
 

 
 

Fig.5 Flow visualization of the rear wing surface by tuft method 

 



6. SUMMARY  
     We have to do some practical action right away in order to reduce Carbon Dioxide from 
any energy consuming mechanical systems.  Aero-train is one of the answers for such 
demand.  If we could solve technological problem in high speed transport system, which is 
considered to be a most difficult task, then it is quite sure that we can more easily solve 
other problems.  So, Aero-Train is a kind of symbol for next generation life style.    
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ABSTRACT: Investigation of towed underwater bodies generally employ three-dimensional, non-linear, dynamic 
computer models that are solved using numerical techniques. These models are susceptible to numerical instability 
and inaccuracies, due to the propagation of numerical and truncation errors through the iteration process. The 
requirements to avoid the above are investigated and a method to predict an acceptable time interval for the time 
stepping algorithm of underwater cable system models is developed. 
 
1.  INTRODUCTION 

Computer modelling is extensively used to investigate underwater towed systems. This requires 
modelling the cable system, the towed platform(s), and the appropriate dynamic interface. Since the 
models are non-linear, it is usual to solve them using numerical integration incorporating iterative 
processes. Similar techniques are used for other underwater cable systems such as mooring systems and 
petroleum risers. Among the major difficulties encountered by the modeller are numerical instability and 
inaccuracy. Instability causes the solution process to “blow up”, resulting in premature termination of the 
computer program. Inaccuracy will give erroneous results as well as contributing to instability, as errors 
entering the calculation will propagate within the solution process 

In previous papers[5,6], the author clearly explains the modelling and solution techniques utilised to 
investigate underwater towed systems. The validation process, which consisted of scaled model tests in a 
circulating water channel and full-scale trials were also explained. In this paper, for the sake of 
completion, only brief descriptions of the above are given. The main focus will be the investigation into 
the numerical stability and accuracy requirements for such models. 

 
2.  MODELLING OF THE SYSTEM 

Figures 1 and 2 show the basic underwater towed system and the three-dimensional, six degrees-of-
freedom (6-DOF) discrete model employed to represent it. The model is capable of representing multi-
cable and multi-body systems[5] and allows for the variation of system and environmental parameters. 
Due to the non-linearities encountered, the cable is modelled by dividing it into a number of discrete 
segments, which then yields a number of second order differential equations to describe the motion of 
each segment[6]. The towed fish are modelled in 6-DOF and integrated within the cable solution algorithm 
to ensure coupling between the fish and the cable system. The author has previously presented detailed 
description of the mathematical models for two-part and multi tow configurations[6]. The model assumes 
the distributed mass of the tow cable to be represented by a series of discrete masses separated by 
weightless, elastic, straight-line segments. The motion of the cable is described by applying Newton's law 
of motion to each node to give, 
 iii XmF &&⋅=  (1) 

where F  is the force vector, m  is the mass matrix (including added mass), and X  is the position 
vector respectively of element i. These matrices will include the affects of the adjacent cable segments, 
including tension, net weight, and drag forces. Following the solution technique described in previous 
publications by the author[6], Eq. (1) can be rearranged to give the linear acceleration of each node as a 
function of the adjacent tension terms as, 
 2
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Fig. 2  Lumped Mass Model 

 
The terms Ti-1 and Ti represent the tensions of the cable segments adjacent to node i. Terms iP and 

iR represent the coefficients of the above tensions respectively, while iS  represents all other forces. The 
fish is modelled with 6-DOF[6] in the following form in order to describe its position and attitude. 

[ ] [ ]T

f
T

ff zyx.mFF γαβ &&&&&&&&&&&&=  (3) 

where M  is the moment vector, x, y, z are the displacements, and α, β, γ are the angular 
displacements of the fish f. Manipulation of Eq. (3) allows its conversion to a form similar to that of Eq. 
(2), thus enabling the fish model to be integrated into the cable model during the solution phase[6]. 
 
3.  SOLUTION TECHNIQUE 

The quasi-static solution of the system is an ideal starting point for the dynamic analysis. Using the 
values obtained from the quasi-static model as initial values at time t, the dynamic model is solved to the 
dynamic boundary conditions during each time interval of ∆t. Numerical integration methods are used to 
solve in the time domain, the nonlinear differential equations describing the motion of the system. A 
multi-step implicit finite difference algorithm known as the Houbolt scheme[1] is used to describe 
approximately the positions and velocities of the nodes at time t+1 as, 

t.6/)X.2X.9X.18X.11(X 2t1tt1t1t ∆−−++
−+−=&  

1t22t1tt1t X.)t.(5.0X.5.0X.2X.5.2X +−−+ ++−= &&∆  (4) 
The tentative accelerations for Eq. (4) are obtained from the equations of motion for the nodes, i.e. 

Eq.  (2). This in turn uses the static segment tension values as initial tentative tensions. These tentative 
segment tensions can then be corrected by using a Newton-Raphson iteration process, based on the 
constraint equation of each segment length. The latter gives the segment length error (ER) as, 
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where A and E are the cable’s cross-sectional area and the modulus of elasticity respectively. The 

tentative tension values need to be corrected to reduce the length error term (ER) to zero. Since the 
coordinates of a node are a function of the tensions of the adjacent cable segments, the length error of that 
segment is a function of the tensions of that cable segment and the two segments adjacent to it. Thus, 
expanding Eq. (5) as a function of the tensions in a Taylor series[6] gives, 
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where matrices [ER] is the cable segment error, [δT] the tension correction, and [ET] the tension 
error, with the higher order terms neglected. This is reduced to a set of recursive linear equations by 
elimination and the tentative tensions are then updated, with the process repeated until convergence. 

 
4. STABILITY ANALYSIS 

Given the long simulation time required for dynamic time domain cable system models, the 
mathematical model and the solution technique must be sufficiently accurate and stable. The errors that 



can enter during the integration process are divided into two categories. The first is the truncation error, 
which is the difference between the exact solution of the partial differential equations and the exact 
solution of the difference equations. The second is the numerical (round off) error, which is the difference 
between the exact solution of the difference equations and the numerical solution of the difference 
equations. Generally the former is much larger than the latter, and is usually responsible for the stability 
issues encountered in numerical schemes. 

Usually all implicit time integration schemes are unconditionally stable, while explicit schemes are 
only conditionally stable. Therefore, explicit schemes require a time step that is less than a defined critical 
value, while the implicit schemes have no limiting time step. However, when using implicit schemes for 
non-linear systems, large time steps will cause the numerical integration scheme to “blow out”, i.e. 
become unstable. The reason for this is the truncation error introduced by the required iteration scheme. 
Thus, the selection of the time step is dependent on the accuracy and stability of the numerical scheme. 
Therefore, the time step should be sufficiently small to ensure accuracy and stability, but large enough to 
prevent long simulation times. 

There are two basic approaches to investigate the dynamics of structures i.e. the direct integration of 
the equations of motion and the modal analysis. In the former, the equations are integrated using a 
numerical step-by-step procedure, the term direct implying that prior to this procedure the equations are 
not transformed in any manner. The solution procedure utilised to solve the tow model is of this type. The 
latter approach consists of changing the basis from the element coordinate basis to an eigenvector basis, 
associated with the natural frequencies (or eigenvalues) of the undamped problem. Thus, it generates an 
alternate set of equations that can be integrated more efficiently by a direct integration scheme, than the 
unmodified equations of motion. It reasons that if the modal form and the unmodified equations are 
integrated using the same scheme, the results should be the same. Therefore, it is possible to analyse the 
modal form of the equations to determine the accuracy and stability of the direct integration scheme. 
Consider the general cable equation of motion given by: 

FXkXcXm =++ &&&   (8) 

where m , c , and k  are the cable element mass, damping, and stiffness matrices respectively.  The 
set of equations represented by Eq. (8) is assembled for a discrete system by superposition of the 
equations representing each individual node. If the number of nodes in the system is n, then the matrices 
in Eq. (8) will be square matrices of the nth order, while the vectors will be column matrices of a similar 
order. Equation (8) is transformed to the eigenvector basis by solving the generalised eigenproblem, 
which gives it in modal form as, 

FXX2X m
2
nmnm =++ ωωζ &&&   (9) 

where mX  is the time dependent modal displacement vector, ωn is the natural frequency, and ζ is 
the damping ratio. This requires only the variables ωn, ζ, and ∆t to be considered in the analysis, and not 
the complete stiffness and mass matrices. In light of the solution characteristic of the direct integration 
method, it is required to estimate the integration error in the solution of Eq. (9) as a function of 

Fand,,t/t min,n ζ∆ , where tn,min is the minimum natural period of the cable mesh. Note: it is the time 
ratio min,nt/t∆ , (i.e. the ratio between the time step and the minimum natural period of the cable mesh), 
and not the absolute time step that governs the criteria for stability and accuracy. 

As stated previously, the integration of the modal form and the unmodified equations using the same 
scheme should give the same result. Therefore, by analysing the modal form of the equations it is possible 
to determine the accuracy and stability of the direct integration scheme. 

Numerical stability depends not on the original set of equations, but on the numerical scheme used. 
Stability requires that the amplification of any errors entering the solution process should be limited. One 
method to estimate the stability of the solution technique employed for Eq. (9) is the use of the 
amplification matrix and the load operator[1,2]. These will depend on the integration scheme used in the 
solution, and are generally defined as, 



1tt1t FLRAR ++ +=  (10) 

where R  is a vector storing the solution quantities, (e.g. displacements, velocities, etc.), A  is the 

amplification matrix, and L  is the load operator. Since the load operator will not influence the numerical 
stability of the scheme, the analysis is carried out with no external load, thus Eq. (10) reduces to, 

t1t RAR =+   (11) 
Inspection of Eq. (11) reveals that it is possible to recursively calculate the solution at any time as, 

tmmt RAR =+  (12) 

where superscript m represents the number of time intervals, i.e., .The 
amplification matrix for the integration scheme is derived using spectral decomposition, resulting in, 

)t.m(tt tmt ∆+=+

1PJPA −=  (13) 

where P  is the matrix of eigenvectors of A , and J  is the Jordan form of A , with its eigenvalues 

along its diagonal. This gives a recursive relationship for the amplification matrix as, 
1mm PJPA −=  (14) 

From Eq. (14) it is possible to deduce the requirements for A  to remain bounded, as “m” increases, 

i.e., ∞→→ mas0A . This occurs if the spectral radius ( )A(p , i.e. the maximum absolute value of 

the eigenvalues of A ), is equal to or less than one, i.e., 

1)A(p ≤  (15) 
Thus, for the stability of the integration method employed, the spectral radius of the amplification 

matrix should be equal to or less than one. It should also be noted that, smaller the spectral radius, more 
rapid is the convergence of the integration scheme. Now consider the Houbolt scheme given by Eq. (4). 
Substituting them in Eq. (9) gives the recursive relationship inclusive of the amplification matrix as, 
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The stability condition for the Houbolt scheme is measured by obtaining the spectral radius of the 
amplification matrix A  given above. Thus, it is required to calculate the eigenvalues of A . A plot of the 

spectral radii versus the time ratio min,nt/t∆  for the Houbolt scheme assuming no damping is given in 
Fig. 3. It is seen from this figure that the spectral radius is less than “1” for all values of min,nt/t∆ . 
Therefore, the Houlbolt scheme is deduced to be unconditionally stable. Inspection of these curves shows 
that as min,nt/t∆  increases, the spectral radius rapidly reduces, highlighting a fast rate of convergence. 
Note: although the inclusion of damping will change the shape of the curve, it does not significantly 
change the stability characteristics at low damping ratios. 
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Fig. 4 Accuracy Parameters of the Houbolt Scheme 

 
The forgoing stability analysis was based on the system being linear. However, we know that the 

mathematical model for the towed cable system is non-linear, i.e. the coefficients of the equations of 
motion will change with time. Since the Houbolt scheme is unconditionally stable, it can be successfully 
used to solve the non-linear underwater tow model. As in linear systems, the Houbolt scheme being 
implicit, considers the equilibrium of the system at the “next” time step, i.e. at time = t+1. However, 
since the system is non-linear, an iterative process is required to solve the equations for each time step. 
The iterative process used here is the Newton-Raphson iteration scheme. This is a predictor-corrector 
method, as the values predicted from the system equations are repeatedly corrected until convergence is 
achieved. 

Two criteria that affect such iteration schemes are the selection of a correct convergence tolerance, 
(which is the difference between the exact solution of the difference equation and the accepted solution), 
and the truncation error, (which is due to neglecting the higher order terms of the Taylor series 
expansion). Either one will introduce errors into the iteration process, that may grow during the 
integration, resulting in inaccuracies and/or stability problems. Consider the solution technique outlined 
previously.  The correction terms for the iteration process are obtained by expanding Eq. (5) in a Taylor 
series to yield Eq. (6). It is assumed that the tentative values of the tow configuration are sufficiently 
close to the solution, thus enabling the higher order terms to be neglected. This is acceptable, if the time 
step is sufficiently small, as the solution of the previous time step (i.e. t) is used as the tentative values for 
the current time step, (i.e. t+1). However, if the time step is large, then the higher order terms cannot be 
neglected, as the error thus introduced may cause the iteration process to “blow up”. A similar situation 
occurs if the forcing function is large, as the changes during the time step are considerable. 

It is possible to increase the accuracy by including some higher order terms into the process. For 
example, the second order terms can be calculated by further differentiating Eq. (5) with respect to the 
tensions of the relevant cable segments. However, the additional computation introduced does not offer a 
significant advantage over the use of a smaller time step with a solution scheme without the higher order 
terms. In general, the stability of implicit numerical schemes utilised for non-linear systems can be 
maintained by using a sufficiently small time step. The limiting condition for the time step has been 
investigated through experience and testing of practical schemes by a number of researches[1,2,7], and is 
predicted as, 

10/tt min,n≤∆  (17) 
 
5.  ACCURACY ANALYSIS 

The accuracy of the numerical schemes is measured for the solution using two criteria, i.e. the 
period elongation and the amplitude decay. These give the deviation of the numerical solution against 
the exact solution, and Fig. 4 shows these parameters for the Houbolt scheme. They indicate that the 



accuracy is good at low min,nt/t∆ , i.e. when the condition given by Eq. (17) is met. As stated previously, 
the integration of the unmodified equations and their modal form, both using the same scheme should 
give the same result. Therefore, by analysing the modal form, (i.e. Eq. (9)), it is possible to determine the 
accuracy of the direct integration scheme. Inspection of Eq. (4) reveals that the Houbolt scheme is a three-
step scheme. Therefore, using the general expression for multi-step integration schemes, Eq. (9) is 
replaced by the following 3-step algorithm. 
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where the terms αt, β t, and γ t are given in reference (6). The truncation error is obtained by using 
the exact solution of Eq. (9) in the integration scheme given by Eq. (18). Substituting and solving the 
resulting characteristic polynomial of the 3-step algorithm yields the error terms as, 
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where δa is the amplitude error, δp is the phase error, and O(∆t2) is the asymptotic notation of the 
error having an order of two. Inspecting Eqs. (19) and (20) shows that the error terms δa and δp are of 
order ∆t2. Therefore, it is stated that the amplitude and phase errors are O(∆t2). The actual expressions 
for the respective error terms can be obtained by solving the above equations.  It can be showed that 
stability issues occur, if a higher order accuracy is pursued[7]. Therefore, as shown in Fig. 4, errors in the 
order of O(∆t2) are acceptable providing the time step is relatively small, i.e. as defined by Eq. (17). Thus, 
for the numerical integration of the non-linear tow model, the time step should be smaller than one tenth 
of the smallest natural period of the cable mesh to ensue acceptable accuracy. 
 
6. CONCLUSION 

In practice, a simpler and quicker method to estimate an appropriate time step for the dynamic 
simulation of the tow model is desirable. By using the longitudinal wave speed obtained from the 
continuous cable model[4,6] a guide to select an appropriate time step for the time domain simulation is 
obtained as in Eq. (21), which used in existing models by the author has shown that the required accuracy 
is obtained without causing the programs to “blow up”. (Note: ρ is the density of the cable material). 

E/.)10/l(t min ρ∆ ≤   (21) 
Computer modelling is a major tool in the investigation of underwater cable systems, including 

towed systems. Due to the non-linearities, these models are solved using numerical techniques 
incorporating iterative processes. The resulting instability and inaccuracy problems have for decades been 
a “thorn in the side” of researches of cable systems. This study has attempted to investigate the reasons 
for such problems, and has led to the prediction of a time step that can be used by operators to minimise 
instability and inaccuracy problems in underwater dynamic cable models. 
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ABSTRACT: RANS simulations of a body performing a steady turn and a deformed body in rectilinear flow
are compared. The deformed body is curved so as to preserve that change in angle of attack along the body that
occurs when a straight body moves through curved streamlines. RANS results for two different turn radii show
good agreement between the two cases for measurements of forces and moments on the body. The effect of
introducing a velocity gradient upstream of the curved body (to preserve the change in velocity due to a change
in radius) causes an increase in forces and moments. In theory, introducing this velocity gradient is essential
for maintaining flow similarity between the two cases and should improve the solution. Analytical methods to
determine the fluid acceleration effects (which are present in the first case but not in the second) are presented.

1 INTRODUCTION

The use of deformed bodies to examine the flow over bodies in a steady turn first began in the 1930s. Gurzhienko
[2] used it to measure forces and moments on airship hulls, as did Von Karman. Gurzhienko’s methods were
used by Chang and Purtell[1] to provide an experimental validation for a numerical method to predict the forces
on a turning body and to examine the flow separation created by this body.

Conventional methods to investigate the flow separation of a body in a steady turn usually rely on a
rotating-arm apparatus, which was used by Lloyd[5] in his extensive study on vorticity measurements from
a body of revolution in a steady turn. Another approach used to investigate the flow separation caused by a
manoeuvring body is to rely on a dynamic plunge/pitch mechanism to create an unsteady manoeuvre. Much
work has been carried out by Simpson, Wetzel, Hoang and Hosder ([7],[3],[4]) at the University of Virginia
using such an apparatus. They have conducted extensive measurements on both the surface and wake flow
created by prolate spheroids and generic submarine body shapes in an unsteady manoeuvre.

The use of curved bodies was proposed by P. N. Joubert to examine the flow over a body of revolution in
a steady turn, but without the need for complicated apparatus such as a rotating arm or a large turning basin.
This enables the body to be examined in a conventional wind tunnel, and since the body is now stationary, flow
measurement becomes significantly easier.

By using this method, we have moved from a body accelerating through a stationary fluid to a stationary
body placed in a steady rectilinear flow. The effects of the fluid acceleration on the flow behaviour must be
accounted for if the method of curved bodies is to be used with confidence.

2 TRANSFORMING EQUATIONS

The full derivation of the transforming equations can be found in Gurzhienko[2]. The essence of the transfor-
mation is the requirement to keep the change in angle of attack � along the body centreline identical in both
cases. As this change in � depends on the curvature of the streamlines, it becomes necessary to construct a
different deformed body for each turn radius investigated. Our situation involves a body of length � performing
a turn around radius ��, whose centre of mass is moving with velocity �� and is aligned at an angle of attack
�� to the flow (see Figure 1). Along the centreline �� the angle of attack varies from zero (denoted as the
pivot point) at B, to �� at the aerodynamic centre, and to some value � at D. We wish to deform the body such
that placing it in a recitilinear flow will preserve this change in angle of attack.

The right-hand side of Figure 1 shows such a body placed in straight streamlines. Note that a velocity
gradient equal to � � ��� must be placed upstream of the curved body to maintain that change in velocity
due to the increasing radius that the body experiences in a steady turn. The equation of the centreline of the
body is :

�� � �� ��� ��

�
����

�
	

�� ��� ��

�
� �

�
(1)



R

0R

0β

z /

z /C

B

D

β

β 0 β 0

V

V0

0β

/z

x

x
B

C

D
V

β

β

β0R0 cos

1

O ω

V0

β0

Figure 1: Body of revolution turning about point O, and the corresponding deformed body placed in rectilinear
flow.

Gurzhienko also derived equations which define the deformed cross-sections passing through point � as :
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where 
 � �� ��� ��. The equation for the velocity gradient in the rectilinear flow case is :
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3 NUMERICAL METHOD

Two cases were examined. In the first, a tight turn was simulated, with turn radius � � ��. In this case, the
pivot point was located at the nose (so � � � at 	�� � �), and �� � 
��Æ.

The second case examined a more gentle turn, with � � ��, with the pivot point located at 	�� � ���.
For this instance, �� � ���Æ.

All results were obtained using the commercial RANS code FLUENT with the two-equation 
�� model.
The modified Shear-Stress-Transport (SST) version of this model was used. The transitional flows option was
used, which requires the mesh near the surface to be fine enough so that the flow in the boundary layer can
be computed all the way to the wall. A second-order discretisation scheme was used to solve for momentum,
pressure and turbulence quantities.

A hybrid-meshing scheme was used. The surface of the body was decomposed into logical squares so
that a hexahedral mapping scheme could be used in the near field region (roughly twice the model diameter in
width). This mapping scheme facilitated the construction of a very fine mesh close to the body to resolve the
boundary layer. From this hexahedral region, tetrahedrons were used to to fill the rest of the flow domain.

4 RESULTS

4.1 R = 3L

For �� � ��
 � ��� , the average forces and moments about the centroid for the bodies are:

�� �� ��

Steady Turn 0.119 0.0235 0.0660
Rectilinear 0.0961 0.0235 0.0747
Rectilinear (with shear) 0.135 0.0309 0.0728

Table 1: Force and moment coefficents for � � ��.



In both cases, the value of drag for the curved body varies by more than 10% compared to the straight
model, as does the computed value of the moment about the � axis. In the case of computed lift coefficients,
the curved model is within 1% of the straight model, while adding the velocity gradient results in almost a 30%
increase in ��.

Plots of surface static pressure at cross sections along the body shown in Figure 2 show good agreement
along the length of the body for the straight body and the curved body. Adding the velocity gradient to the
rectilinear flow case creates a noticeable difference in the variation in �� across the body.

Plots of streamwise vorticity shown in Figure 3 show the structure of the off-body vortex produced by
the cross-flow separation. The size of the vortex is very similar for the straight body and for the curved body.
Introducing the velocity gradient slightly reduces the size and strength of the vortex at 	�� � ���.

Pictures of the surface streamlines in Figure 4 for each body (obtained by integrating the 	� � and �
components of wall-shear stress) show that the surface flow and three-dimensional separation lines are very
similar in all cases. Both feature two separation lines, and local topology that is consistent with that identified
by Wetzel and Simpson[7]. Note that introducing the velocity gradient shows no visible change in the streamline
pattern.

4.2 R = 5L

For �� � ��
� ���, the average forces and moments about the centroid for the bodies are :

Co-ord. system �� �� ��

Rotating 0.121 0.00507 0.0238
Rectilinear 0.119 0.00618 0.0281
Rectilinear (with shear) 0.127 0.00627 0.0280

Table 2: Force and moment coefficents for � � ��.

Computed values of �� for the curved bodies are within 5% of the value for the straight body. Values of
�� are in both cases are greater than 20 %, whilst the error between the values for �� are of similar magnitude
to the previous case � � ��.

The surface pressure distribution in this case show similar trends to the corresponding case for � � ��
with respect to the three cases considered. The radial pressure gradient for this turn radius is less severe than
for � � ��.

Plots of streamwise vorticity showed the same trends to the previous case, except the size and strength of
the off-body vortex was reduced.

Pictures of the surface streamlines in Figure 5 for each body show similar surface topology to the previous
case. Since the angle of attack for the case is less than for � � ��, the size of the separation lines are
signficantly smaller, indicating a smaller region of cross-flow separation as expected. As with the previous
case, the introduction of the velocity gradient does not effect the flow pattern.

5 DISCUSSION

Munk [6] used simple momentum analysis to attempt to compute the forces on a slender body of revolution in
a steady turn moving through a perfect fluid. These equations were then used to predict the applied bending
moment to an airship hull.

Munk showed that the equations for the transverse force (in this case lift) and longitudinal force (drag)
were :

����� �
��� ��� ����

�

�
(4)

�	
�� �
��� ��	 ����

�

�
(5)

whilst the moment about the aerodynamic center was equal to :

� �
�

�
��� ����� ��	 �����

� (6)

Here ��� and ��� refer to the added masses in the longitudinal and transverse direction. For our body with
��� � ���� �� � �, computing these equations for our flow case gives the data shown in Table 3. The values
for �� vary between 30-100 % when compared to computed values for the body in a steady turn. The values
of �� vary by an order of magnitude.
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Figure 2: Plots of �� vs � at various 	�� for � � ��.
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Figure 5: Surface flow patterns for straight body (left), curved body (center) and curved body with velocity
gradient (right) for � � ��

5.1 Effect of centrifugal forces

Munk also attempted to quantify the effect of the centrifugal forces on the airship hull and its contribution to
the bending moment. Continuing with his simple analysis, Munk showed that the transverse force distribution
along an airship was equal to :
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(7)

where 
� is the ratio of the apparent moment of inertia of the body to the moment of inertia of the displaced
fluid. The first term of this equation agrees with the moment of a ship moving rectilinearly with angle of attack
�. The second term describes the negative component of centrifugal force acting the length of the body, whilst
the last term describes the positive components acting at each end.

A preliminary first-order solution of this equation for our bodies of revolution shows that the centrifugal
forces are an order of magnitude less than the forces associated with the pitching moment created by the body
moving rectilinearly at an angle of attack �.

Munk concluded that the transverse forces acting on a body of revolution in a turn are (a) due to the
angular velocity associated with the tangential velocity; (b) due to the body positioned with an angle of attack



R � Drag (N) �� Moment (N m) ��

3 
���Æ 2.58 0.072 19.76 0.30
5 ���Æ 0.52 0.024 6.67 0.10

Table 3: Forces and Moments according to Munk’s calculations

(c) due to the centrifugal force of the longitudinal apparent mass and (d) due to the centrifugal force of the
transverse apparent mass if the body has an angle of attack. The forces due to (a) and (b) are most important.

When we perform tests with our curved bodies, we are maintaining the effects of (a) and (b), so we are
including the important forces which act on our body. What is required is an estimate of the centrifugal forces
to ensure that either these forces can be safely neglected, or that a correction can be applied to our results if
necessary.

5.2 Effect of the velocity gradient

In section 4 the effect of introducing a velocity gradient across our curved model was shown to incease the
accuracy of the method of curved bodies. Previous calculations have shown that the magnitude of the forces
and moments depends greatly on the range of �� that the velocity gradient is applied to. In order to match
the change in velocity of the curved flow over the straight body, the velocity gradient should only be applied
within the limits of the curved body along the �� axis. For our case, this corresponds to a variation in freestream
velocity of less than 1%. In practise, this may be impossible to achieve within a wind tunnel.

Gurzhienko recorded undesirable effects when he introduced a velocity gradient across his wind tunnel
using a variable cotton mesh. Although this mesh was able to introduce the correct gradient of velocity, it was
present along the whole width of working section. This increased the measured forces and moments on his
curved bodies, which agrees with our earlier calculations. Whilst he acknowledged the effect of this mesh in
introducing more turbulence into the working section, he never fully quantified the reasons for the increased
forces and moments he measured on his curved bodies.

6 CONCLUSION

In this study, comparisons were made using a commercial RANS CFD package between a body of revolution
in a steady turn, and a deformed body in rectilinear flow. The results show a reasonable agreement between the
forces and moments obtained using the deformed body, which is consistent with earlier work.

The use of the curved bodies provides good qualitative data in such areas as the size and location of the
off-body vortex, and the location and topology of the surface streamlines and flow separation.

Simple momentum analysis shows that the absence of any centrifugal forces in the case of the deformed
body has little effect on the measured forces. But the absence of these forces may affect the separation be-
haviour.
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ABSTRACT: A new method for the calculation of surface tension force in the computational modeling of interfacial 
flows which use volume tracking methods is developed. This method which is referred to as Pressure Calculation based 
on the Interface Location (PCIL), is an improved version of the CSF model and is based on the calculation of the pressure 
force at the interface cell faces. The pressure forces at the interface cell faces are calculated according to the pressure 
imposed by each fluid on the portion of the cell face that is occupied by that fluid. Special formulations for the pressure 
in the interfacial cells are derived for different orientations of an interface. The method is applied to a two-dimensional 
motionless drop of liquid in an initially stagnant fluid with no gravity force. A two-fluid, PLIC-VOF method is used to 
simulate the flow numerically. A wide range of Ohnesorge numbers, and density and viscosity ratios of two fluids are 
tested. It is shown that the presence of spurious currents is mainly due to the inaccurate calculation of pressure forces on 
the interface cells. The new model reduces the spurious currents up to three orders of magnitude for the cases tested. 
Keywords: Volume-Of-Fluid (VOF) method; Two-phase flow; Continuum surface force; Pressure Calculation based on 
Interface Location (PCIL) model; Interfacial flows; Free surface flows; Spurious currents; Parasitic currents. 

 
1. INTRODUCTION 

In simulation of interfacial flows with fixed mesh, determination  of the interface pressure and surface 
tension  has been one of the most troublesome and challenging issues. Surface tension forces appear in 
equations by imposing a jump condition across the interface. This condition is difficult to apply numerically 
and has been the center of attention by many researchers.  

In order to circumvent these problems, Brackbill et al.[1] developed a method referred to as the 
Continuum Surface Force (CSF) model.  This model replaces the need to know the exact location of free 
surface by converting the surface tension effect into an equivalent volume force which is simply added to the 
Navier-Stokes equations as an additional body force. This force has smoothed properties and acts only in a 
finite transition region (where the cells or their neighbors consist of both phases ) across the interface. The 
CSF model reformulates surface tension into an equivalent volume force Fv

st as follows: 
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where, σ is the surface tension coefficient, κ is the surface curvature, n is the unit normal to the surface, F is 
volume fraction of heavy fluid in the cells, ?(x) is the local value of density and [?] is the difference between 
the density of the heavier and the lighter fluids. The second fraction (the density correction term) in Eq. (1) is 
added to correct the force in the momentum equation. This dampens the acceleration of the lighter fluid in the 
cells near the interface that contain small amounts of heavier fluid. This  fraction is not directly obtained from 
any conservation law, but it is only postulated.  

The CSF model does not produce accurate numerical solution in capillary dominated fluid problems. In 
problems where the surface tension forces dominate the viscous forces, the spurious currents can cause 
interface oscillations and deform or destroy the interface. New methods are needed to deal with this problem.  
There have been some attempts to reduce the spurious currents. Popinet and Zaleski[8] have reduced the 



 

spurious currents considerably using a front capturing algorithm for the solution of two-dimensional flows. 
They have used a Lagrangian advection marker to advect the interface and have calculated the pressure force 
according to the location of the interface at each cell face. Meier et al.[6] have also developed a new method 
based on the higher order model for the calculation of interface curvature to reduce the spurious currents. 
Renardy and Renardy[9] have introduced another VOF based algorithm (referred to as PROST) for the 
calculation of the body force due to the surface tension. The advection of the volume fraction in their method 
is based on a Lagrangian scheme that allows no diffusion and produces a sharp interface. They have used a 
least-square fit of a quadratic surface to the volume fraction function for each interface and its neighbors. 
Jamet et al.[4] have introduced a model to eliminate the parasitic currents through the conservation of energy 
in the second gradient method. Therefore, by using the second-gradient method and the reduction of the 
truncation error in the computation of the energy exchanges between the surface and the kinetic energies, the 
energy is conserved and the parasitic currents are reduced drastically.  

  Although the above methods reduce the spurious currents by some orders of magnitude, the methods 
are expensive, somewhat complicated and they may not accurately calculate the pressure force at the 
interface. Here, we present a new method, which we will refer to as the Pressure Calculation based on the 
Interface Location (PCIL). We will show that by an accurate implementation of the pressure forces at the 
interface cells, it is possible to eliminate a significant portion of the spurious currents . By using this new 
method, the spurious currents can be reduced by up to three orders of magnitude. Unlike the above 
mentioned methods, PCIL model is simple and extremely inexpensive (very limited extra calculations are 
needed to implement PCIL model). The new method is directly derived by applying the momentum balance 
on each interface cell.  

 
2. GOVERNING EQUATIONS 

For the unsteady, incompressible Navier-Stokes equations in two dimensions and with fluid interfaces 
the volume-of-fluid, VOF[3], method along with a piecewise linear interface calculation, PLIC[7], is  used to 
capture the fluid interfaces. The governing equations describing this problem are : 
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where, ui’s are the velocity components, and t and xi are time and space coordinates, the volume fraction of 
fluid, F, is  zero where only fluid 2 exists in the cell and is one where only fluid 1 exits in the cell, p is 

pressure, î  is unit vector in ith direction and ? and µ are the mixture density and absolute viscosity and they 
depend on the densities and viscosities of each fluid as:  
 

)( 212 ρρρρ −+= F ,     (5) 
and 

)( 212 µµµµ −+= F ,     (6) 
 

where, ?1 and ?2, µ1 and µ2 are densities and viscosities of fluids 1 and 2, respectively.  
 

3. SURFACE TENSION FORCE MODEL 
Consider a two-dimensional interface cell shown in Fig. (1), in which fluid 1 and 2 are separated by an 

interface line. We denote fluid 1 as the heavier fluid and fluid 2 as the lighter fluid. If the surface tension 



 

forces are considered, then there would be a pressure jump at the interface. Thus, the value of the pressure in 
each fluid may be different. In order to calculate the pressure force exerted on the cells . We apply the 
momentum balance equation to the cell.  

From the balance of the pressure force acting along the x-direction on the cell the pressure force per 
unit area on the left side of the cell, which is the average pressure acting on this side of the cell, can be 
obtained as follow: 

 
)( 212 LLLLL ppHpp −+= ,    (7) 

where, pL is the average pressure on the left side, and
y

l
H L

L ∆
≡  is a  non-dimensional parameter that 

denotes the location of the interface at the left side of the cell, ?y is the length of the cell in y  direction and lL 
is the length of the cell side which is in contact with fluid 1. 

The pressure difference in the parenthesis represents 
the pressure jump due to surface tension. Similar relations 
can be obtained for the pressure force on the right (R), top 
(T) and bottom (B) sides of the cell:  

 
)( 212 kkkkk ppHpp −+= , (8) 

 
 where, k  may be L, R, T, or B. Hk is the non-dimensional 
parameter corresponding to the k side of the cell. The value 
of Hk is  between zero and one in the interface region and is  
one or zero otherwise, depending on being in fluid 1 or 2, 
respectively.  

The pressure jump , ps, at the interface is related to the surface tension coefficient according to: 
 

σκ=−= 21 ppps .    (9) 
 

Therefore, Eq. (8) becomes: 
 

σκkkk Hpp += 2 ,    (10) 
 

The second term in the right hand side of Eq. (10) is the normal force per unit area due to the pressure jump  
or surface tension force, 

 

   nF σκHst
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So our model for the surface tension force would be the modified version of CFS model which the factor H is 
included in the model. Thus Eq. (1) becomes:  
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Note that the density correction factor (the last term in the Eq. 1) is no longer needed and is omitted in our 
model. In the process of the reconstruction of interface, the location of the interface and its cross-section with 
the cell faces is already determined (see Youngs[12] and also Shirani et al.[11] for more details). So the value of 
Hk on each side of a cell can be easily calculated.  

Finally the PCIL method explained above may be summarized by the following steps: 
1. Determination of the intersection locations of an interface line with the cell faces. 
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Fig. 1  An interface cell described 
 based on the volume of the fluids. 



 

2. Calculations of Hk, by normalizing the intersection locations with the cell face length. 
3. Multiplying the value of Hk to the capillary forces used in the momentum equation, Eq. (12). 

 
4. RESULTS AND DISCUSSIONS 

The CSF model for surface tension force is modified using our PCIL model and is tested by simulating 
the temporal evolution of a two-dimensional liquid drop. A circular drop of the liquid  in the absence of 
gravity is placed inside of a second fluid. The initial velocities of both fluids are set to zero. The drop radius, 
r, the fluid densities, ?1 and ?2, the viscosities, µ1 and µ2, and the surface tension coefficient, s , are the main 
physical variables (subscript 1 stands for the drop and 2 for the surrounding fluid). The number of grid 
points, the time step, ?t, and the grid size, h, are the numerical parameters. The computational grid is fixed, 
rectangular and uniform.  The code SURFER[5] is modified and used in this work. The details of the 
numerical method based on VOF-PLIC and Chorin’s projection method for a semi-implicit Navier-Stokes 
solver, which have been used in this code, are given in [5] and are not repeated here.  

Number of grid points, the grid size, the time step, and the radius of the drop are held fixed. We 
investigate the effects of variation of physical properties (i.e., density, viscosity and surface tension 
coefficient) on the flow field. Due to the inaccurate modeling and calculation of the pressure force at the 
interfacial cells, the spurious currents are produced. These currents tend to grow with time. The drop radius is 
taken as 0.25L, where L is the domain length in the x-direction and it is set equal to one. A 66×66 mesh and a 
time step of 10-5 are chosen for all of the calculations. 

From the dimensional analysis  the physical properties of the problem are grouped into three non-
dimensional parameters: 
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where Oh1 is Ohnesorge number based on the properties of fluid 1 contained in the drop. Following Popinet 
and Zaleski [8] and Scardovelli and Zaleski[10], for a constant radius drop and from the dimensional analysis , 
the velocity of spurious currents is only a linear function of the surface tension coefficient and viscosity, i.e., 
u ~ s/µ, and it is not a function of density. Thus it is expected that as the density of the flow changes, the 
velocity of the spurious currents remains constant.  

A wide range of values including the properties of water (fluid 1) and air (fluid 2) are used for the 
above parameters. The results are presented in terms of the norms of the velocity (mean values of the 
absolute velocity) and the maximum values of the velocity of the spurious currents as a function of various 
variables.  Figures (2) and (3) show the velocities of spurious currents at N=8000, when the density 
correction factor, (see Eq. 1 ), is or is not used, respectively. N is  the number of time steps. The scale for the 
velocity vectors shown in the figures is the same. The results in this case are obtained for a drop of water in 
air, i.e., ?1/?2 = 830.545, µ1/µ2 = 54.945 and the Ohnesorge number based on the water properties (Oh1) is 
1.17×10-4. As can be seen form the figures, the addition of the PCIL model results in much smaller spurious 
currents. 

Figure (4) shows the maximum velocities of the spurious currents as a function of time for the above 
cases. The results show that the velocities of spurious currents are reduced by orders of magnitudes when the 
PCIL model is used. From Figure (3) it can be seen that once the density correction ratio is added, the 
spurious currents become smaller, but they are still significant. By implementing the PCIL model, the 
velocities of the spurious currents drop by about two orders of magnitudes. Note that in all the cases  studied, 
the spurious currents still tend to increase with time. From the figure, it can clearly be seen that the 
implementation of the PCIL factor is enough to reduce the spurious currents and there is no need to 
implement the density ratio correction in addition to the PCIL.  Therefore, the PCIL model is a better 
alternative to the density ratio correction, which is some what a heuristic relation and does not reduce the 
spurious currents as much as the PCIL model.  

Effects of fluid properties in the form of density and viscosity ratios and Ohnesorge number are 
considered here. Figure (5) shows the maximum velocities of spurious currents as a function of density ratio. 
Results for cases with and without the PCIL model are presented. The viscosity ratio (µ1/µ2) is 54.945 and 
Oh1 = 1.17×10-4 (equivalent to that of a drop of water in air). This  figure shows that as the density ratio 
increases, the velocity of the spurious currents remains constant for the corrected pressure forces, while it 
increases when the correction is not applied. This variation of velocity in the corrected version is in 



 

agreement with the dimensional analysis , which indicates that u ~ s/µ and it should not be a function of 
density. It has been recorded by other researchers (e.g. see[2]) that by increasing the density ratio, the spurious 
current velocity increases and thus they cannot get reasonable results for high density ratios. Figure (5) shows 
that when the PCIL model is used, the increase in the density ratio does not generate extra spurious 
velocities. Therefore , one may be able to get reasonable results for high density ratios. 

Figure (6) shows the maximum velocities of the spurious currents as a function of Ohnesorge number. 
Results for both cases  with and without the PCIL model are presented. In this figure, the density ratio (?1/?2) 
is 830.545 and the viscosity ratio (µ1/µ2) is 54.945. It is shown that the spurious velocities decrease by two 
orders of magnitude when the PCIL is used. As Oh1 increases, the spurious velocities decrease by a power 
law. The variation of the velocity with Oh1 is also in agreement with the dimensional analysis  which indicates 
u ~ s/µ. 

Figure (7) shows the maximum velocities of the spurious currents as a function of viscosity ratio. 
Results for both cases with and without the PCIL model are presented. In this figure, the density ratio (?1/?2) 
is 830.545 and Oh1 = 1.17×10-4.  Here, µ1 has been changed and in order to keep Oh1 constant, the surface 
tension coefficient is changed accordingly. It is shown that the spurious velocities decrease by more than two 
orders of magnitude when the correction is applied. As the viscosity ratio  increases, the spurious velocities 
increase by a power law. This  variation is also in agreement with the dimensional analysis  which indicates 
that u ~ s/µ,[8,10]. 

 
5. CONCLUSIONS 

A new method for the calculation of the pressure force at the interface cells for volume tracking 
methods is derived and presented. In this method, first the intersection locations of an interface with the 
interfacial cell faces are determined. Then the area of a cell face which is in contact with the heavier fluid is 
normalized with the cell face area to obtain a factor H. Finally, the capillary force used in momentum 
equation is corrected by multiplying it by the factor H determined for the cell . 

The new method is applied to a sample problem of still drop in a motionless fluid. It is shown that the 
velocities of the spurious currents decrease by more than two orders of magnitude. Variation of the velocity 
of the spurious currents with Ohnesorge number, density and viscosity ratios of the two fluids involved, are 
examined. It is found that the variation with the Ohnesorge number and the viscosity ratio is a power law. 
Changes in the density ratio do not affect the corrected version. However, the spurious currents drastically 
increase with the density ratio when pressure is not corrected. Although the spurious currents are reduced by 
several orders of magnitude when the corrected pressure is used, there are still some currents in the flow. 
They increase with time at a rate similar to those in the original CSF model but with much smaller 
magnitudes. These currents can be further reduced by using a more accurate calculation of normal vectors 
and the interface locations.   
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Fig. 2 Spurious currents with the same velocity scales, without density correction 
without PCIL model (left column) and with PCIL model (right column) 

Fig. 3 Spurious currents with the same velocity scales, with density correction 
without PCIL model (left column) and with PCIL model (right column)  
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IN-VITRO STUDY ON THE STEADY FLOW CHARACTERISTICS OF 
PROXIMAL ANASTOMOTIC MODELS 

 
L. P. Chua, W. F. Ji and T. M. Zhou  
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ABSTRACT: Particle Image Velocimetry (PIV) was used to study the effects of grafting angle, graft Reynolds 
number and graft resistance on the steady flow characteristics of proximal anastomosis. Low velocity regions are 
found at the heel and toe, whose size depends on the Reynolds number, anastomosis angle and resistance of the graft.  
Stagnation point is found along the graft outer wall. The spatial gradients of wall shear stress are high around the 
anastomosis joint. Based on the experimental results, the method of improving the graft patency rate is proposed.  
 
1. INTRODUCTION 

  Arterial bypass graft, the major treatment for arterial stenosis, has long-term patency problem due to 
the formation of intimal hyperplasia along the graft and at the graft/artery junction. It has been well 
demonstrated that the hemodynamic factors, including anastomosis angle, flow rate ratio of the graft to 
the aorta, wall shear stress distribution etc, are linked to the development of intimal hyperplasia [1, 2]. 
However, most of the previous studies were focused on the distal anastomosis and little effort has been 
put on the proximal side. But it is possible that the proximal anastomosis provides the condition to form 
mitogens and activated platelets, and then they are convected down to the distal part. The effect of flow 
patterns of the proximal side on the distal part has not been fully understood. Therefore the objective of 
this study is to investigate the effect of flow angle, flow rate, and wall shear stress distributions etc. on the 
graft patency under steady flow condition by PIV measurement.  
 
2. EXPERRIMENTAL METHODS 
 
2.1 Flow Models and Working Fluid 

Proximal anastomosis models with angles of 30, 45, 75and 90 degree were fabricated from pyrex 
glass for backward facing graft condition, as shown in Fig. 1. The “aorta” and the “graft” have the inner 
diameters of 20mm and 6mm respectively. The working fluid involved mixing 30% of glycerin with 70% 
of aqueous ammonium thiocyanate (NH4SCN) solution by weight. The aqueous ammonium thiocyanate 
solution was made up of equal parts of ammonium thiocyanate salt and distilled water by weight. The 
solution has a refractive index of 1.47 and dynamic viscosity of 4 at the room temperature 

, which were measured by commercial refractometer (model ATAGO 3T) and a controlled rate 
rheometer (model Contraves low shear 40) respectively. Polyamid Seeding Particle (38A2-121 PSP-50, 
Dantec Measurement Technology) was added into the fluid to highlight the flow field. 

sPa ⋅× −31008.
C22

 
2.2 Flow Circuit and PIV System 

Fig. 2 is a schematic presentation of the experimental setup for Particle Image Velocimetry 
measurements. The fluid is forced from a sump tank (1) by a centrifugal pump (2) into the reservoir and 
overflow container (3). To maintain a constant static pressure in the model, overflow fluid flows back into 
the sump tank (1). The fluid flows through the contraction cone (6) and then the test model (8) before 
going back into the sump tank (1). The three valves (4), (4a) and (4b) are used to control the inlet flow 
rate and resistance of the aorta and the graft respectively. The flow meter (5) monitors the flow rate into 
the graft.  

 



A Q-switched, double cavity pulsed Nd: YAG laser was used as the illumination source, which has a 
repetition rate of 10Hz and provides two thin (0.3-1mm) green laser sheets ( nm532=λ ). An 80C42 
DoubleImage 700 camera with a Nikon AF Micro-Nikkor lens 60/2.8 was used to capture two 
consecutive images of the scatter particles passing through the test section.  
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       Fig. 1 Schematic designs of the proximal  Fig. 2. Schematic presentation of in-vitro experimental

arrangement.                   anastomotic models 
 

Clinical studies have shown that the mean flow rate in the saphenous vein aorta-to-coronary graft is 
around 79 [3] and the Reynolds number based on the 6 mm diameter graft and 79  
is around 169. Hence Reynolds numbers 100, 169 and 250 were selected as the control parameter in this 
measurement to study the flow characteristics under different peripheral resistance (after aorta) conditions.  

min/25ml± min/ml

 
3. RESULTS AND DISCUSSION 

The flow characteristics of 45 backward facing graft model with Reynolds number at the graft 
=100 and 250 were shown in Fig. 3 (a) and (b) respectively. For R =100, the aorta flow follows 

closely to the contour of the wall before it starts to deviate towards the graft upon passing the heel section 
(at about half the graft diameter). The flow reattaches at the graft inner wall at further downstream 
location, which results in the formation of a low velocity region closed to the heel. Close to the toe 
section, the deviated main flow approaches the high curvature wall and forms a stagnation point where 
the flow bifurcates. The velocity distribution in the graft is skewed towards the graft outer wall at the 
entry, and at further downstream of the graft, the flow is observed to skew slightly towards to the inner 
wall.  

GRe Ge

 
For =250, it is observed that the main flow moves towards the graft much earlier as compared to 
=100 case. This has resulted in the formation of the low velocity region near the heel to move further 

downstream and smaller in size. Meanwhile the fluid in the graft is observed to impinge on the outer wall 
which results in the stagnation point near the toe. It has also been observed that the size of the low 
velocity region along graft inner wall is smaller than those of R =100 and R =169 (not shown here).  
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Fig. 3. Flow characteristics of  backward facing graft model under different Re45 G  (a) ReG =100; (b) ReG =250. 
 

The effect of anastomotic angle on the flow characteristics has also been studied in this project. The 
flow fields of 30 , , backward facing and 90 graft models at R =169 are shown in Fig. 4 (a), 
(b), (c) and (d) respectively. Comparing velocity plots of different backward facing graft models, it is 
observed that the backward facing model has the smallest low velocity region near the heel along the 
graft inner wall. It is also noticed that in this model the flow upon entering the graft tends to follow more 
closely to the geometry of the graft at further downstream. However, in cases of 30 , backward 
facing graft model the flow skews more obviously toward the graft outer wall and results in a new low 
velocity region along the graft inner wall. On the whole, it is noted that the flow skews toward outer wall 
greatly in the graft at other angles except backward facing graft model. In summary, the low velocity 
regions are observed to locate at the heel and toe at all anastomotic models. The region at the heel is thus 
experienced low shear stress [4], which is an ideal site for thrombus formation. These low velocity 
regions will also be prone to fat deposition and result in the formation of hyperplasia at the joint, blocking 
the re-routed blood flow into the graft. 
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The investigation on the effect of the resistance at the end of the graft was conducted in this 

experiment. With the preset inlet flow rate ( 5 m ), The graft resistance is simulated by 1.00, 1.25, 1.50 
and 1.75 rounds of valve (4b) opening, which is corresponding to the flow rate ratio 

inl

AG QQ  of 0.0293, 
0.0380, 0.0447 and 0.0507 respectively. Note the Fig. 5 (a) to (d) show the enlarged velocity plots of 

backward facing model under different resistance conditions. It is observed that the low velocity 
region at the heel reduces in size with the increase of valve opening, which is increase of graft flow rate. 
It is also noticed that at larger graft flow rate, the flow in the aorta skews less towards the graft outer wall 
before entering the graft, and the flow aligns back to the graft axis at relative shorter downstream distance. 

45

 
 



               
                                (a)                                                                                          (b) 

                 
                                (c)                                                                                         (d) 
         Fig. 4.  Flow fields of various anastomotic angles in models with =169. (a) backward facing  GRe 30

                                 (b) 45 backward facing (c) backward facing (d) 90  graft model. 75
 
 

                                 
                         (a) Valve opening at 1 rnd                                                    (b) Valve opening at 1.25 rnd 
 

                              
(c) Valve opening at 1.5 rnd                                                     (d) Valve opening at 1.75 rnd 
 

Fig. 5. Velocity vector and streamline of backward facing graft model with different resistance configurations: 45
 (a) 1 rnd, (b) 1.25 rnd, (c) 1.5 rnd and (d) 1.75 rnd of valve opening 



The wall shear stresses along the graft inner wall and outer wall were calculated using the following 
relation: 

                                                                     0|y
u
y

τ µ →
∂=
∂

                                                                                          (1) 

where u y∂ ∂ is the velocity gradient close to the wall and µ = 4  is used in the present 

study. Fig. 6 shows the wall shear stress distribution in 45 backward facing model with different Re . 
Note the coordinates used to express the wall shear stress profiles are shown schematically at the corner 
of the figures. The annotation,  and are the points selected approximately at the end of the straight 
aortic wall and are going along the direction of the graft inner and outer walls respectively. 

sPa ⋅× −31008.
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Fig. 6 Wall shear stress distributions in the backward facing anastomotic joint with different .  45 ReG
                                                            (a) Inner wall;(b) Outer wall. 

 
The wall shear stress value falls sharply to a low level at the curved section of the inner wall around 

 as shown in Fig. 6 (a), and then remains fairly constant over a distance before gradually 
increasing at further downstream of the graft. At around the toe region as shown in Fig. 6 (b), the wall 
shear stress along the graft increases after moving away from the stagnation point (whereby wall shear 
stress=0 at ) but remains fairly constant at the region beyond . This is probably due 
to the fact that the fluid beyond this point has actually realigned itself with the graft axis. A peak value of 
wall shear stress is found at the region about x  which corresponds to the sudden change in the 
flow direction at the region upon hitting the graft outer wall. For the region whereby part of the 
bifurcation flow goes back to the aorta, the wall shear stress decreases sharply till the minimum of 

Pa at x  for =250, before it gradually levels at approximately −  at 
, i.e. it is at the similar level of those at the aortic wall before the joint.  Note that the 

negative value in the aorta is due to the definition of . 

mmx 31 =
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In general, the distribution of wall shear stress is consistent with the general flow characteristics 
described in the earlier section. The region downstream of the stagnation point along the outer wall has a 
higher wall shear stress value than those at the upstream aorta region. When the increases from 100 
to 250, the highest wall shear stresses along the outer wall increase from  to 2.0 Pa. This should 
be due to the high flow rate in the graft, resulting in the higher lashing stress on the toe of the graft.  Note 
that large wall shear stress variation is found near the heel and toe region. It is believed that the high wall 
shear stress variation together with the low wall shear stress region was associated with the formation of 
intimal hyperplasia [4, 5, 6]. 

GRe
Pa6.1−

 
4. CONCLUSION 

The velocity vectors obtained from the PIV measurements provide a comprehensive view of the flow 
fields in the anastomotic models. In the steady flow, low velocity regions were observed at the heel and 
the toe of the anastomotic model. In addition, stagnation points were also found along the outer wall in all 
cases.  The low velocity region at the heel is an ideal site for thrombus formation. The spatial extent of 
these low velocity regions was dependent on the flow rate in the graft as well as the anastomotic angle, 
that is the higher the flow rate in the graft, the smaller the size of the low velocity region near the heel.  
 

Large wall shear stress variation was found near the heel and the toe of all anastomosis models. Note 
that the peak wall shear stress is always found at the graft outer wall and a small region near the heel has 
a relatively low wall shear stress level (range from 0 to 0.5 Pa). The experimental results under steady 
flow condition could provide detailed and reliable flow fields and wall shear stress distribution of the 
anastomosis. More realistic physiological waveform shall be used in the next stage of study and the 
results will be reported in due course. 
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ABSTRACT: A new experimental technique was developed to measure all particle positions which are dispersed in a liquid 
three-dimensionally. This measurement was shown to be possible if particles and liquid are transparent with the same index of 
refraction, they are illuminated by a laser sheet and a fluorescent material is mixed in the liquid.  By traversing the laser sheet in 
the direction perpendicular to the camera axis, we could obtain series of cross sectional images of particles and after image analysis 
we could calculate coordinates of all particles. This method was shown to be applied to the case of fluidized particles. 
 
1. INTRODUCTION 
   Behavior of particles in fluidized liquid-particle systems are difficult to observe, because they are obstructed by 
other particles in the container. This is the reason why particle behavior in 3D fluidized system has not been studied 
precisely. There are some trials to obtain particle positions by the use of laser sheet. For dilutely dispersed systems 
direct observation of particles are possible[1]. Transparent particles packed in a liquid with the same refraction index 
were observed [2]. Particles including fluorescent material were visualized under illumination by laser light [3]. In 
these methods particles are overlapped in densely dispersed cases, and identification of each particle is rather 
difficult. 
   Now, the present authors have shown that particle positions in 3D liquid-particle system can be measured if the 
conditions listed below are satisfied. This idea was proposed at an informal seminar[4]. 

(1) Particles and liquid are transparent and have an equal deflection indices, 
(2) the liquid contains a certain amount of fluorescent material, 
(3) the system is illuminated by a laser sheet, from the direction perpendicular to the axis of camera. 

 
 

Laser  
sheet 

Shift 
 
 
 
 
 
 
 
 
 

Fig.1 Basic idea of this work. Left:
arrangement of particles and laser sheet.
Right: an example of cross sectional image. 

 
 
 



As is shown in Fig. 1(a), the laser sheet is not scattered or refracted while going through the liquid particle 
system. Moreover, when a fluorescent material is mixed in the liquid, only the liquid part within the cross section by 
the laser sheet emit light, which is visible from the direction perpendicular to the laser sheet. This image is not 
disturbed by the particles because of the same refraction indices between particles and liquid. Figure 1(b) is an 
example of cross sectional image of liquid-particle system taken in this way. By recording images at many cross 
sections one can obtain positions of all particles after some image analyses. This is the basic idea of this method. 
Precise of the method of measurement is explained in the next section. 
 
2. APPARATUS 

The apparatus for measuring particle positions in fluidized system is shown in Fig. 2. It was composed of a test 
section, 100 x100 x150 mm, in which spherical particles of acrylic resin with diameter 15 mm and a mixture of two 
types of silicon oil (Shinetsu-Kagaku, KF56 and KF96-50CS) with a small amount of fluorescent material 
(pyrromethene 580, 5.72x10-1 mg/lit) were filled, a laser system (Ion Laser Tech., 5490A) with an optical system to 
produce a light sheet, a roller pump (Furukawa Science, RP-KV1-100) to circulate the liquid, a temperature regulator 
and a video camera. Glass fibers for light transmission were set with interval 5 mm, which played a role to indicate 
the position of the laser sheet.  

Data obtained directly from the video images were the x- and y-coordinates and the radii of cross section of all 
particles. Each particle was cut twice by the laser sheet, and from data at these two cross sections one could calculate 
the z-coordinate of the particle centers.  

 
 
 

Fig.2  Experimental apparatus. 
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   In general refraction indices depend on the temperature. In a preliminary experiment it was confirmed that the 
refraction indices of the particles and the liquid became equal at the temperature 32℃, where images of particles 
were sharpest. The temperature regulator shown in Fig. 2 was necessary to assure this temperature condition. 



   In order to know the position of the laser sheet in the z-direction, glass fibers were arranged linearly, which were 
directed to receive the laser sheet. Other ends of the glass fibers were arranged linearly directed to the camera, so that 
one glass fiber at the position of the laser sheet transmitted laser light. In addition scale for this position indicator was 
attached below the ends of the glass fiber. 
 
3. RESULTS 
   First, accuracy of this method was examined by measuring positions of particles with known configuration. Next, 
this method was applied to the case of fluidized particles. 
 
3.1 Estimation of accuracy 
   Accuracy of measurement was examined for rest particles arranged in close-packed state. Under the condition 
with the laser traversing velocity 75 mm/s, video data with 60 frame/s and exposure time 0.01s, which was the best 
condition for the present apparatus, the coordinates of particles relative to one particular particle could be obtained 
with error of 0.5 mm (about 0.5 % of the particle diameter).  
   Reproducibility of measurement was examined for randomly packed particles at rest by measuring twice during 
both ways of laser traversing. Deviations of particle positions between two measurements were 0.5 mm in x- and 
y-coordinates and 1-2 mm in z-coordinate. The worse reproducibility in z-coordinates came from a systematic error 
in deviation between the shatter instant of the video camera and the glass fiber indicator. 
 
3.2 Measurement for fluidized particles 
   The particles were fluidized by operating the roller pump with flow rate 1.3 lit/min. In this case particles were 
moving with velocities less than about 2 mm/s. By traversing the laser sheet both ways 3 times without any pose in 
between, six sets of cross sectional data were recorded. The interval time between successive traversing was 1 s, and 
particle shifts within this interval were less than 2 mm (much less than the particle diameter), hence correspondences 
between particle images in successive traversing were assured. From the successive measurements of particle 
positions, velocities of all particles were calculated.  
 
 

Fig. 3  Reconstruction of all particles in fluidization. Left: perspective view of instantaneous 
positions of particles. Right: cross section at z = 50 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 

  Reconstructed distribution of particles during one traversing process is shown in Fig. 3. The overlapping of 
cross sections of several particles in Fig. 3(Right) shows an existence of errors in the measurement.  



Velocity vectors of particles during one intervals is shown in Fig. 4. This figure shows a random distribution of 
vectors, as was expected. However, in some cases velocity vectors were aligned to the same direction (not shown in 
this figure), which is an unnatural situation because the particles were confined in a finite container. This was caused 
by the systematic error mentioned above.  
   After all, the present results show that this method of measurement works well. And, at the same time there is 
still a room for improvement.  
 
 
 
 
 
 
 
 
 

Fig. 4  Velocity vectors of all particles
obtained from particle positions at 2
instants. 

 
 
 
 
 
 
 
4. CONCLUSION 

The new method of measurement of particle positions in 3D liquid-particle system was confirmed to work well 
if some optical conditions are satisfied. The systematic error mentioned in the preceding section will be eliminated 
by setting one stationary particle at a place where it does not disturb motions of other particles.  

This method has a room for improvement to match to various needs of researches．For example, if particles 
have various diameters or various shapes one needs more number of cross sections and a sophisticated algorithm to 
treat them. However, this method will be developed it to a standard method for studying particle behavior in 3D 
systems. Possible fields to which this method can be applied would be the chemical engineering, the soil mechanics, 
the physics of condensed matter, etc. However, it should be noted also that this method can not be applied to real 
systems, because it requires severe conditions on optical properties of material in experiment. Therefore, this method 
will be powerful in model experiments of liquid particle systems. 
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ABSTRACT: When summer ends, tree leaves start falling.  They dance around in air.  We planned to perform a 
systematic investigation on the dance.  We used a transparent water tank and dropped various kinds of thin model 
leaf.  Among them the most beautiful dance is performed by the Japanese one-yen coin.  The dance by the coin is 
very regular and reproducible.  After hundreds of trial we found that the stable dance is performed by models with 
axial symmetry.  In the process of falling all models turn around the vertical axis and if there is no symmetricity, 
falling mode changes and the path is randomized.  Appropriate conditions for the stable dance were discovered. 
 
 
1. INTRODUCTION 
     The dance of falling leaves in autumn is an excellent subject of poems.  People feel that the 
warm summer is gone and the cold winter is coming.  The motion of leaf is, from the fluid-dynamical 
viewpoint, a mixture of regular and random motions.  So often we argue if we can predict the motion of 
leaves by Navier-Stokes equation.  We planned a systematical experiment on falling leaves in a 
laboratory.  Our aim is to obtain some insight on the mixed regular and random motions. 
 
 
2. EXPERIMENTAL ARRANGEMENT 
     Experiments were performed in a square water tank of which height is about 2 meters and 
cross-section of 15 cm by 15 cm.  Various kinds of simulated leaf were dropped from the top of tank.  
The material of leaves are either aluminum or plastic plates of which specific weight is larger than 1.  
Real leaves move around in air.  Our experiments are plastic leaves floating in water.  They may be 
some quantitative difference but we may not lose the qualitative features of dancing leaves in a water 
tank. 
     Motion pictures were taken from two directions, one from the front and the other form the side by 
using a mirror set at 45 degrees.  By the picture processing technique we could obtain a series of still 
pictures at a specified time interval. 
 
 
3. LEAVES 
     More than 20 kinds of plastic leaf were tested.  Among them fig. 1 is an example of regular 
dancing by an aluminum maple leaf.  The left picture is taken from the front, whereas the right picture 
is taken from the side.  Fig. 2 shows an irregular mode of dance played by a plastic ginkgo leaf.  It is 
not easy to predict the performance of leaf from the plan form.  Two leaves are not much different in 
shape but the dance is different.  The location of the center of gravity may play an important role. 



       
4. GEOMETRICAL FIGURES 
     Plastic plates of various geometrical shapes were dropped from the top.  Fig. 3 shows the result 
by a spade-shape of plastic plate of 0.5 mm thickness.  The flight in this case is rather irregular.  Fig. 4 
shows a rectangle.  It is a regular dance.  From these results it is clear that the axi-symmetricity of 
plan form is very important for the stable dance. 
     An excellent regular dance was performed by Japanese one-yen coin as shown in Fig. 5.  The 
coin is circular, made of pure aluminum, the diameter is exactly 2 cm and the mass is exactly 2 grams. 
The motion is almost periodic and highly reproducible.  We can observe that the coin eventually moves 
upward.  This is also observed in Fig. 4. 
     Two coins pasted back-to-back shows a regular trace as shown in Fig. 6.  In this case the mass is 
doubled but the surface area remains the same.  This implies that the regular flight is a result of 
axisymmetricity rather than the weight itself. 

Fig. 1: Maple  Fig. 2: Ginkgo 

Fig. 3: Spade Fig. 4: Rectangle 



 
5. DYNAMICS OF FALLING LEAVES 
     Fig. 7 shows the schematic pattern of falling one-yen coin.  It starts from vertical fall with a 
horizontal face -1, 2.  This mode is unstable.  The coin tilts and slides.  As it falls it picks up speed 
and the lift force acts on the coin –3, 4.  A pitching moment also acts and lifts the leading edge of coin.  
As a result lift force increases and there is a short period of horizontal slide –5.  The lift increases 
further and exceeds the gravitational force.  Due to the lift the coin moves upward as shown in 6 and 
eventually it stalls.  Then the lift is lost and the coin falls backward –7, 8, 9, 10.  It picks up the lift 
and repeats the same pattern –11, 12, 13, 14, 15. 
     Fig. 8 shows forces acting on the falling leaf.  The angle of attack is an important factor for the 
balance of three forces because the lift force is determined by the angle.  The pitching moment is also 
important. 
 
 

Fig. 5: One-yen coin Fig. 6: Pasted two coins 

Fig. 7: Flight path 

 

Fig. 8: Force system 



     In order to understand the effect of shape of leaf on the dance performance a systematic 
experiment was made with circular models.  Two kinds of material with different specific weights, 
aluminum (s.w. = 2.7) and plastic plate, acryl (s.w. = 1.4) were used. In Figs. 9 and 10 the thickness is 
kept constant and the diameter was varied.  They show the effect on the wave length and amplitude, 
respectively.  As the diameter increases both wave length and amplitude increase.  
     Fig. 11 and 12 show the effect of thickness on wave length and amplitude.  A large-scale dance 
seems to be performed by an appropriate thickness. 
 
 
5. CONCLUDING REMARKS 
     Patterns of dancing falling leaves of various shapes in a water tank were photographed.  We 
found conditions for the stable dance as: 
(1) The model should be of appropriate thickness.  If it is too thin, it slides too much and does not 

come back. 
(2) The sable flight is supported by the lift due to side slides. 
(3) The axi-symmetricity is an important for a stable flight. 
(4) The most stable flight is achieved by a circular leaf. 

Fig. 9: Diameter and wave length Fig. 10: Diameter and amplitude 

Fig. 11: Thickness and wave length Fig. 12: Thickness and amplitude 
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ELECTRON SHOCK WAVES: DISCONTINUITY CONDITIONS 
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ABSTRACT: A one-dimensional, steady -state, three component (electrons, ions, and neutral particles) fluid model is 
utilized to find analytical solutions to electrical breakdown waves.  This model treats the wave front as an electron shock 
wave moving forward mainly due to the electron impact ionization.  The set of equations describing the model will include 
the equation of conservation of mass, equation of conservation of momentum, and equation of conservation of energy, 
coupled with Poisson’s equation.  Inclusion of heat conduction term in the equation of conservation of energy and 
allowance for the temperature derivative discontinuity at the shock front alters the initial boundary conditions on electron 
temperature and velocity.  This article presents derivation of the discontinuity conditions and the use of these conditions in 
integration of the electron fluid dynamical equations through the dynamical transition region of the wave.  This study will 
concentrate on antiforce waves, waves for which the electric field force on electrons is in the opposite direction of wave 
propagation. 

   
1. INTRODUCTION 
        During the 1920s, based on the examination of the process of formation and distribution of space charge in 
the long discharge tube, Beams [1] was the first who proposed a qualitative theory consistent with the observed 
lack of heavy particle motion in the breakdown waves.  Beams called them “Potential Waves.”  However, it 
was in the 1960s that most of the advances in formulation and understanding of the propagation of breakdown 
waves took place.  Paxton and Fowler [2] formulated a fluid model for breakdown wave propagation.  Using a 
one-dimensional, steady state, three-fluid, hydrodynamical model, they were able to write down the equations 
of conservation of mass, momentum, and energy.   In terrestrial application these wave represent the “dart 
leader” or “return stroke” observed in lightning strikes. 
        Nowhere in the theory of the electron waves is the distinction between the concepts associated with 
Townsend process and the wave process as clearly displayed as in the discontinuity conditions which govern 
the leading edge of the electrical breakdown wave.  It is at the leading edge of the wave that the illusion was 
created that antiforce breakdown waves could not exist without photo processes.  The photo-ionization model 
assumed that the radiation emitted by the gas is the driving mechanism and it is the fundamental element in 
propagation of the ionization from one place to another.  In Townsend type analysis one must be able to 
discuss, at the wave front, the parallel acceleration in the field of a group of electrons which were at rest at the 
instant before attention was directed to them, and that the front of the wave is a transition layer in which this 
acceleration is taking place.  The wave process recognizes the existence of a discontinuity, on one side of 
which is the electron gas, whose members have gathered there by diffusive mixing from many distant places 
and have no individual relationship to the mechanical parameters existing at a given point. 
 
2. ANALYSIS  
        The discontinuity conditions derive from the global differential equations for balance of charge, baryons, 
mass, momentum, and energy.  When stationary solutions are sought, and the space dependant expressions are 
integrated across a presumed discontinuity with nothing but neutral particles in front of it, one obtains 
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Where, n, Ni, N, m, M i, M, T e, T i, T, v, Vi, and V are the electron, ion, and neutral particle number density, 
mass, temperature, and velocity behind the wave front respectively.  N0 and V0 are the neutral particle number 
density and velocity in front of the wave respectively, E is the electric field within the wave, E0 is the electric 
field at the wave front, φi is the ionization potential, k is the Boltzman’s constant, and qe is the heat conduction 
term.  
        The essence of the electron fluid wave behavior is that there is no mechanism to build up a neutral particle 
motion at the discontinuity, so V = V0 and T = T0; and since at the wave front ions are produced from the 
neutral particles by action of the electron gas, they too are unaffected by the wave, so Vi1= V0.  The time during 
which the entire wave acts on the gas that it passes through is very brief so that V = V 0 and T = T0 remains a 
good approximation at all times.  V i, however, changes through the wave by a small but significant amount 
under the direct action of the electric field.  Using Equations (1-3), one can modify several  terms in the 
momentum equation as follows 
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Substituting the above terms in the momentum equation reduces it to 
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        The wave front can not be marked by a sudden change in the electric field, because a discontinuity in the 
electric field results from a surface charge, or from an infinite volume charge density at the wave front, so the 
electric field, E, has to be equal to E0 at the wave front.  At the wave front the electrons will have a velocity, v1, 
a number density, n1, and  a temperature of, Te1, and  also the ion and neutral particle velocities are equal that of 
heavy particle velocity in front of the wave (Vi = V = V 0).  Using these conditions in Equation (6) reduces it to 
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If n1 and v1 are not zero, there can be a strong discontinuity, Rankine-Huganot type, with the bracketed quantity 
conditionally zero.  At the wave front, since n1 ≠ 0, we obtain the initial condition on electron temperature as 
follows 
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Since temperature cannot be negative, and zero current condition requires that V and v to have the same sign; 
therefore,  
 

V > v > 0. 
 

Introducing dimensionless variables 
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in Equation (8), we obtain the dimensionless initial condition on electron temperature as follows 
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       Using Equations (1-3) and the above mentioned approximations, several terms within the equation of 
conservation of energy can be modified as follows 
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Substituting the above modifications in Equation (5) we obtain a modified global energy equation as follows 
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At the wave front, Vi = V0 = V, therefore, equation (10) reduces to 
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        The heat conduction term takes the standard form, 
dx
dT
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5− , where K 1 is the elastic collision 

frequency. Substituting the heat conduction term in the energy equation results in 
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In dimensionless variables Equation (12) reduces to 
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Substituting for αθ1 in Equation (13) from Equation (9) and expanding the resulting equation becomes 
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Dividing both sides of Equation (14) by ν1ψ 1, results in the following quadratic equation in ψ1 
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Solving Equation (15) for ψ1 results in  
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The condition, V > v > 0, requires that 1  > ψ1 > 0.  Therefore, the negative sign in Equation (16) has to be 
chosen. 
        For antiforce waves, waves for which the electric field force on electrons is in the opposite direction of 
wave propagation, the final form of the equations of conservation of mass, momentum, energy, and Poisson’s 
equation in non-dimensional form is (Hemmati [3]) 
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3. THE NUMERICAL SOLUTIONS AND RESULTS 
       We will use Hemmati’s [3] approach to integrate the set of equations through the dynamical transition 
region (sheath region) of the wave.  At the wave front the electron velocity is less than the wave velocity 
(ψ 1<1); therefore, according to Equation (20), the net electric field intensity will increase until electrons gain 
speeds in excess of ions and heavy particles (ψ >1).  The net electric field then will start decreasing.  Since a 
conductor cannot support an electric field, the magnitude of the electric field has to approach zero at the end of 
the sheath region (η→ 0).  Without the supporting potential of the electric field the electrons gradually slow 
down due to collisions with neutral particles, until their speeds approach that of the ions and heavy particles 
(ψ → 1).  Using the initial conditions on electron temperature and velocity (Equations 9 and 16), we have been 
successful in integrating equations (17-20) through the sheath region for antiforce waves propagating into a 
non-ionized medium.  We will present the wave profile for two wave speeds (α= 0.05 and α  = 1).  Our 
solutions meet the above mentioned conditions (ψ → 1 and η→ 0) at the end of the sheath region.  
        Figures 1 and 2 show the net electric field (applied plus space charge field), η, as a function of electron 
velocity, ψ , within the sheath region for antiforce waves propagating into a non ionized medium for α = 0.05 
and α = 1 respectively.   α  = 0.05 represents a wave speed of V = 1.3 x 107 m/s, and α  = 1 represents a slow 
wave speed of V = 3.2 x 106 m/s.  We were also able to integrate the electron fluid dynamical equations for 
wave speeds as low as V = 2 x 106 m/s.  Integration of the equations for lower wave speeds becomes very 
difficult and time consuming.   

      Figures 3 shows the wave profile for electron 

Figure 1. Electric Field as a Function of Electron Velocity 
Within The Sheath for Alpha = 0.05
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Figure 2. Eleclric Field as a Function of Electron Velocity 
Within the Sheath for Alpha = 1
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velocity, ψ , electric field, η, electron temperature, θ, ionization rate, µ , and electron number density, ν, as a 
function of position, ξ, within the sheath for α = 1.  Figure 4 shows the wave profile for electron velocity, 
electric field, ionization rate, and electron number density for α = 0.05.  Figure 5 is a plot of electron 
temperature as a function of position within the sheath for α 
= 0.05.  As the graphs indicate the sheath thickness increases as the wave velocity decreases.  ξ = 6 for α = 1 
represents a sheath thickness of 0.003 m.  θ = 15 for α = 0.05 represents an electron gas temperature 8.7 x 10 6 

 K.  

Figure 5. Electron Temperature as a Function of Position 
Within the Sheath for Alpha = 0.05
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Figure 3. Electric Field, Electron Velocity, Electron 
Temperature, Ionization Rate, and Electron Number Density as 

a Function of Position Within the Sheath for Alpha = 1
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Figure 4. Electric Field, Electron Velocity, Ionization Rate, and 
Electron Number Density as a Function of Position Within the 

Sheath for Alpha = 0.05
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4. CONCLUSIONS  
       Including the heat conduction term in the equation of conservation of energy and allowance for the 
temperature derivative discontinuity at the shock front results in a new boundary condition equation for 
electron velocity.   Using the new boundary condition equation for electron velocity we were able to integrate 
the new set of electron fluid dynamical equations through the sheath r egion of the wave.   The results meet the 
expected conditions at the end of the sheath region.  The wave velocities for which the integration of the set of 
electron fluid dynamical equations become possible compare well with the experimental results reported by 
Rakov et al. [5].  Practicing engineers and physicists such as Allen et al. [6], who for instance conduct 
“experimental studies of spark-generated shock wave propagation in CO-laser sustained optically pumped CO-
Ar-O2 plasmas” will find our results useful. 
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ABSTRACT: A new variational formulation is presented for flows of a compressible
ideal fluid by defining first a Galilei-invariant Lagrangian. The variation is required to be
gauge-invariant (both global and local) with respect to two kinds of symmetry group. By
carrying out a gauge-covariant variation, we deduce the Euler’s equation of motion.

First symmetry group in the study is the translation group. The velocity field consistent
with the parallel translational transformation is found to be irrotational. Next, we consider
a gauge group, i.e. SO(3). It will be shown that the new gauge transformation introduces
a rotational component in the velocity field, i.e. the vorticity. In complying with the local
gauge invariance, a gauge-covariant derivative is defined by introducing a new gauge field.
It is found that the gauge field is the vorticity itself. As a result, the covariant derivative
of velocity coincides with the so-called material derivative of velocity. Thus, from the
Hamilton’s principle, the Euler’s equation of motion for an ideal fluid is derived.

Based on the Noether’s theorem, the gauge symmetry with respect to the translation
group results in the conservation law of total momentum, while the symmetry with respect
to the rotation group results in the conservation law of total angular momentum. In
addition, the Lagrangian has a symmetry with respect to particle permutation, which
leads to the vorticity equation. Thus, it is found that the well-known equations in fluid
mechanics are related to various symmetries of the Lagrangian.

1 INTRODUCTION: FLUID FLOWS AND FIELD THEORY

Study of fluid flows is considered to be a field theory in Newtonian mechanics. In
other words, it is a field theory of mass flow subject to Galilei transformation. It is well-
known that there are various similarities between fluid mechanics and electromagnetism.
For example, the functional relation between velocity and vorticity fields is the same as
the Biot-Savart law known in the electromagnetism between magnetic field and electric
current. One may ask whether the similarity is mere an analogy, or has a solid theoretical
background.

In the theory of gauge field, a guiding principle is that laws of physics should be
expressed in a form that is independent of any particular coordinate system. In the
quantum field theory [1, 2], a free-particle Lagrangian is defined first in such a way as
having an invariance under Lorenz transformation. Next, a gauge principle is applied to
the Lagrangian, requiring it to have a symmetry, i.e. the gauge invariance. As a result, a
gauge field such as the elecromagnetic field is introduced to satisfy local gauge invariance.
In regard to the fluid flows, relevant symmetry groups are translation group and rotation
group [5].

1Visiting Professor, Nankai Institute of Mathematics, China
2Institute of Dynamical Systems, Higashi-yama 2-11-3, Meguro-ku, Tokyo 153-0043, Japan
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We seek a scenario which has a formal equivalence with the gauge theory in the quan-
tum field theory. To that end, we define a Galilei-invariant Lagrangian for fluid flows and
examine whether it has a gauge invariance in addition to the Galilei invariance. Applying
the gauge principle to the Lagrangian first with respect to translational transformations,
we obtain an equation of motion from the action principle. However, the velocity field thus
obtained with respect to the translation group must have a potential, i.e. is irrotational.

Next, we consider an additional transformation with respect to the gauge group SO(3),
a rotation group in three-dimensional space. The gauge transformation introduces a new
rotational component in the velocity field (i.e. vorticity), even though the original field is
irrotational. In complying with the local gauge invariance, a gauge-covariant derivative is
defined by introducing a new gauge field Ω. Galilei invariance of the covariant derivative
requires that the gauge field Ω should coincide with the vorticity. As a result, the covariant
derivative of velocity is found to be the so-called material derivative of velocity, and the
Euler’s equation of motion for an ideal fluid is derived from the Hamilton’s principle [3].
The Noether’s theorem leads to conservation laws associated with the global invariance
with respect to the two gauge groups [4]: i.e. conservation equations of total momentum
and total angular momentum respectively.

In the following sections, we try to formulate the flow field on the basis of the gauge
principle. It will be found that the flow fields are characterized by two gauge groups: a
translation group and a rotation group. Interestingly, the former is abelian and the latter
is non-abelian. So, the flow fields are governed with two different transformation laws.

2 HAMILTON’S PRINCIPLE FOR AN IDEAL FLUID

2.1 Constitutive Conditions
In order to comply with two gauge invariances (translational and rotational), we carry

out the material variations under the following three constitutive conditions.
( i ) Kinematic condition: The trajectory of a material particle in the physical x-space,
specified by the Lagrangian coordinte a, is denoted by xa(τ) = x(τ,a), and the particle
velocity is

v(x, t) = ∂τx(τ,a) . (1)

All the variations are taken so as to follow such trajectories of material particles. In
addition, all the analyses are carried out by keeping mass fixed. As a consequence, the
equation of continuity must be satisfied always.
( ii ) Ideal fluid: An ideal fluid is defined by the property that there is no disspative
mechanism within it such as viscous dissipation or thermal conduction ([6], §2, 49). As
a consequence, the fluid motion is isentropic, i.e. the entropy s per unit mass (specific
entropy) remains constant following the motion of each material particle. The entropy is
not necessarily constant at every spatial point, i.e. not necessarily homentropic.
( iii ) Gauge-covariance: All the expressions of the formulation must satisfy both global
and local gauge invariance. Therefore, not only the action A (defined by (3) just below),
but also its varied form must be gauge-invariant. The gauge-covariant derivative ∇tv

2



defined by (5) (or (6)) must be used for the variation.

2.2 Lagrangian and Action Principle
Full Lagrangian for flows of an ideal fluid is defined by

LF[v, ρ, ε] =
∫

M

1
2 〈v,v 〉 ρ dV −

∫
M

ε(ρ, s) ρ dV , (2)

where v = (vk) is the fluid velocity, ρ the density, and ε the internal energy per unit fluid
mass, with dV a volume element, and 〈v, v〉 ≡ v · v =

∑3
k=1 vkvk is a scalar product,

and M is a bounded space under consideration with x ∈ M ⊂ R
3. This Lagrangian is

invariant with respect to both the translational [5] and rotational gauge transformations
[3, 4]. The action principle is given by δA = 0, where the action is defined by

A =
∫ t1

t0

LF[v, ρ, ε] dt. (3)

According to the scenario outlined in the previous section, we carry out an isentropic
material variation satisfying local gauge invariance, and obtain the Euler’s equation of
motion for an ideal fluid. There are some byproducts from the present formulation. From
the global gauge invariance of SO(3), we will obtain a Noether’s conservation law, i.e.
the conservation of total angular momentum of the system, in addition to the conserva-
tion of total momentum associated with the translational invariance. Furthermore, the
Lagrangian has a symmetry with respect to particle permutation, which leads to a local
law of vorticity conservation, i.e. the vorticity equation [4].

2.3 Gauge principle
Flow of an ideal fluid is described by a velocity field v(x, t), which can be represented

by a linear combination of irrotational and rotational parts:

v(x, t) = grad f + curl B . (4)

The covariant derivative ∇tv is given by

∇tv = ∂tv + grad(1
2 v2) + ω × v (5)

= ∂tv + (v · ∇)v , (6)

which is also composed with irrotational and rotational parts, where ω = ∇× v.
The above form of the covariant derivative ∇tv is deduced [3, 4] on the basis of the

gauge principle [1, 2]. According to the principle, the time derivative ∂t = ∂/∂t must
be modified so that all the variations as well as the Lagrangian LF are gauge-invariant.
Suppose that the time derivative of velocity v is represented such that

∇tv = ∆tv + Ωv = ∂tv + Av + Ωv, ∆tv∗ = ∂tv∗ + Av∗.

where A and Ω are linear operators, called gauge fields. First, concerning an irrotational
flow field v∗ = grad f , we require that the covariant derivative ∆tv∗ = ∂tv∗ + Av∗ is
invariant with respect to translational gauge transformation, both global and local. Fur-
thermore, ∆tv∗ is required to be invariant with respect to Galilei transformation. This
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determines the gauge operator A [5] such that Av∗ = (v∗ · ∇)v∗ = 1
2

grad(v∗)2, where
(v∗ · ∇)(v∗)k = (∂if)∂i(∂kf) = (∂if)∂k(∂if) = 1

2 ∂k(v∗)2.
Next, it is required that the covariant derivative ∇tv = ∆tv + Ωv is invariant with

respect to rotational gauge transformation SO(3), both global and local. Galilei invariance
of ∆tv + Ωv determines the gauge operator Ω which is represented as a skew-symmetric
matrix (an element of Lie algebra so(3)). Then, the Ωv is expressed by a vector product
Ω̂ × v, where

Ω̂ = ∇× v = ω

is the vorticity. It is found [3, 4] that the vorticity ω is the gauge field with respect to
the gauge group SO(3). Thus, the covariant derivative (5) is deduced.

The first expression (5) represents two different fields explicitly, derived from two
different gauge invariances. The second (6) is the expression of the material derivative.
It should be noted that the covariant derivative ∇tv is invariant with respect to the two
gauge transformations: both translational and rotational.

2.4 Material Variation: Rotational and Isentropic
Invariance of the mass ρ dV along the flow, i.e. Dt(ρdV ) = 0, is required as a kinematic

condition, where Dt = ∂t + v · ∇. From this, we obtain the continuity equation:

∂tρ + div(ρv) = 0. (7)

The isentropic condition is represented by Dt(sρdV ) = 0. Using (7), we obtain the equa-
tion of entropy conservation:

Dts = ∂ts + v · ∇ s = 0 . (8)

In the material variation, all variations are taken so as to follow particle displacement
under the kinematical constraint (7) and the isentropic condition (8).

Writing an infinitesimal variation of the particle position as

xa �→ xa + ξ(xa, t) , (9)

the variation field δxa = ξ(xa, t) is represented by a linear combination of irrotational
part and rotational part:

ξ(x, t) = grad ϕ + curl Ψ . (10)

Variation of the particle velocity is given by va �→ va + ∆va, where ∆va = (ξ · ∇)v + Dtξ
(up to O(|ξ|) terms).

Variations of ρ and ε consist of two components: ∆ρ = ξ ·∇ρ+δρ and ∆ε = ξ ·∇ε+δε.
It is assumed that their variations are carried out adiabatically: δs = 0.

The proper part of density variation δρ is caused by the displacemnet δxa = ξ(x, t).
From the condition of fixed mass variation, we have, δρ = −ρdiv ξ. Then, the proper
variation of the internal energy ε(ρ, s) is given by δε = (p/ρ2) δρ.

The variation field ξ(x, t) is constrained to be tangential to the boundary surface S of
M , and vanishes at both ends t0, t1 of the time integration of the action A:

〈n, ξ〉 = 0, for x ∈ S = ∂M , at any ∀t, (11)
ξ(x, t0) = 0, ξ(x, t1) = 0, for ∀x ∈ M, (12)
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where n is unit outward normal to the boundary S.

3 EULER’S EQUATION OF MOTION

From (3) together with (2), variation of A is given by

δA =
[ ∫

M

〈v, ξ〉 ρ dV
]t1

t0
+

∫ t1

t0

dt

∮
S

p 〈n, ξ〉dS

−
∫ t1

t0

dt

∫
M

〈(∇tv + ρ−1grad p
)
, ξ

〉
ρ dV, (13)

where p is the pressure. The first line on the right hand side vanishes owing to the
boundary conditions (11) and (12). Thus, the action principle δ A = 0 leads to

∇tv +
1
ρ
∇ p = 0 , (14)

for arbitrary variation ξ. This is the Euler’s equation of motion. Using (6),

∂tv + (v · ∇)v = −1
ρ
∇ p . (15)

By using (5) and (1/ρ)∇p = ∇h (h: enthalpy), this is equivalently written as

∂tv + ω × v + ∇(1
2 v2) = −∇h . (16)

The equation, either (14), (15) or (16), must be supplemented by the equation of continuity
(7) and the isentropic equation (8).

4 SUMMARY AND DISCUSSIONS

Guided by the gauge principle in the quantum field theory, we have successfully pre-
sented a gauge-covariant variational formulation of ideal fluid flows.

With respect to displacements of material particles, it is required that the Lagrangian
should be invariant under transformations of both parallel translation group and rotation
group, and in addition that the variation field of the translational transfromation must be
irrotational. The action principle applied first to the variations of the translation group
resulted in the equation for potential flows. However, general local gauge transformation
of the velocity field v(x) includes rotational components, i.e. the vorticity ω. The gauge
principle requires invariance with respect to both the translation group and the rotation
group. In complying with the local gauge invariance (with respec to both transformations),
a gauge-covariant derivative is defined in terms of gauge fields. The gauge-field terms Av
and Ωv imply existence of a background material field [5].

Using the gauge-covariant derivative, the variational principle is formulated by means
of isentropic material variations, and the Euler’s equation of motion has been derived
from the Hamilton’s principle, where the Lagrangian density consists of a kinetic energy
term and an internal energy term representing the background field. This formulation is
considered to unify traditional approaches.
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There are byproducts in the present formulation. The global gauge invariances of the
Lagrangian with respect to two transfomations (both translation and rotation groups)
imply Noether’s conservation laws, which are the conservations of total momentum and
total angular momentum. In addition, the Lagrangian has an internal symmetry with
respect to particle permutation, which leads to the vorticity equation [4, 5]. Thus, it is
found that all the equations familiar in fluid mechanics are related to various symmetries
of the Lagrangian.

The form of Lagrangian (2) is compact with no constraint term, and the variation is
carried out adiabatically by following particle trajectories. In the conventional variations
[8, 9], the Lagarangian has additional constraint terms which are imposed to obtain rota-
tional component of velocity field3. The present variational formulation is nothing but the
Hamilton’s principle (of a system of point masses) extended to a continuous distribution
of massive particles, i.e. an ideal fluid.

Present material variation may look similar to that of Bretherton [7] in some respects.
However there is an essential difference with the fact that the present covariant derivative
(5) has been derived from the gauge principle, whereas Bretherton [7] defines the particle
acceleration by (6) in an intuitive way as is always done in fluid dynamics. In the con-
ventional approaches, the formula ∇tv = ∂tv + (v · ∇)v is taken as a trivial relation for
the rate of change of the velocity vector v (acceleration of a material particle). On the
other hand, it is not clearly said what principle governs the rate of change of the vorticity
vector ω = ∇ × v, and how the rate of change ∂tω is expressed by the current fields v
and ω. Although both of v and ω are vector fields in R

3, there is some difference between
∂tv and ∂tω in the expressions in terms of v and ω, which is explained, in the traditional
formualtion, only by the procedure that the rate of change of ω is derived by taking curl
of the equation of motion. The present gauge theory provides a theoretical ground for
physical analogy between the aeroacoustic phenomena associated with vortices and the
electron and electromagnetic-field interactions.
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WKH� WHPSHUDWXUH�GHSHQGHQFH� RI� YLVFRVLW\� GRHV� QRW� SURGXFH� ODUJH� HIIHFWV� RQ� WKH� YHORFLW\� SURILOH��
&RPSHWLWLRQ� EHWZHHQ� WKHVH� WZR� IDFWRUV� DIIHFWV� ERWK� WKH� SUHVVXUH� GURS� DQG� WKH� 1XVVHOW� QXPEHU�� )RU�
H[DPSOH�DW�[
 �������WKH�HQKDQFHPHQW�RI�1X7�[�IRU�Q ����DQG�% ����LV�DERXW��������DQG��������UHODWLYH�
WR�WKH�FRQVWDQW�YLVFRVLW\�FRQGLWLRQ�IRU�FLUFXODU�DQG�WULDQJXODU�GXFWV��UHVSHFWLYHO\���
� )RU�WKH�+��ERXQGDU\�FRQGLWLRQ�E\�UHDVRQ�RI�VPDOO�WHPSHUDWXUH�GLIIHUHQFH�EHWZHHQ�WKH�FKDQQHO�ZDOOV�
DQG�WKH�EXON�WHPSHUDWXUH�DQG�DOVR�EHFDXVH�RI�WKH�UHODWLYHO\�IODW�YHORFLW\�SURILOHV�DW�ORFDWLRQV�FORVH�WR�WKH�
HQWUDQFH��WKH�HIIHFW�RI�YDULDEOH�YLVFRVLW\�LV�QHJOLJLEOH�LQ�WKLV�VHFWLRQ��)XUWKHU�GRZQVWUHDP�WKH�LQFUHDVH�LQ�
� [E[Z �� TT � ��DQG�GHYHORSPHQW�RI�WKH�YHORFLW\�PDNH�WKHVH�HIIHFWV�PRUH�QRWDEOH��$W�[
 �������IRU�Q ����
DQG�% ������1X+��[��LQFUHDVHV�E\�RQO\�������UHODWLYH�WR�FRQVWDQW�YLVFRVLW\�FRQGLWLRQ�IRU�WKH�WULDQJXODU�GXFW�
DPRQJ� DOO� VWXGLHG� JHRPHWULHV�� ZKLOH� DW� [
 �������� LQFUHDVHV� RI� ���� �� DQG� ����� �� DUH� REVHUYHG� IRU�
FLUFXODU�DQG�WULDQJXODU�GXFWV��UHVSHFWLYHO\��&RPSDULVRQ�RI�WKH�1X7�[�DQG�1X+��[�UHVXOWV�VKRZ�VPDOOHU�HIIHFW�
RI�WHPSHUDWXUH�GHSHQGHQW�YLVFRVLW\�IRU�WKH�+��ERXQGDU\�FRQGLWLRQ��
� � � � � � � � � � � �
���&21&/86,21�

7KH� QXPHULFDO� VLPXODWLRQV� FRQVLGHUHG� WKH� HIIHFWV� RI� WHPSHUDWXUH� GHSHQGHQW� YLVFRVLW\� RQ�
VLPXOWDQHRXVO\� GHYHORSLQJ� IORZ� DQG� KHDW� WUDQVIHU� RI� SRZHU� ODZ� PRGHO� QRQ�1HZWRQLDQ� IOXLG� IORZLQJ�
WKURXJK�FLUFXODU�DQG�HTXLODWHUDO�WULDQJXODU�GXFWV��5HVXOWV�DUH�JLYHQ�IRU�7�DQG�+��ERXQGDU\�FRQGLWLRQV�DQG�
IRU� IOXLGV�RI�GLIIHUHQW�SRZHU� ODZ�LQGLFHV��9LVFRVLW\�YDULDWLRQ�ZLWK� WHPSHUDWXUH�DIIHFWV� WKH� ORFDO�1XVVHOW�
QXPEHU�� )RU� KHDWLQJ�� WKH� LQFUHDVH� LQ� WKH� ORFDO� 1XVVHOW� QXPEHU� IRU� FRQVWDQW� WHPSHUDWXUH� ERXQGDU\�
FRQGLWLRQV�LQ�QRWLFHDEO\�KLJKHU�WKDQ�WKDW�IRU�WKH�FRQVWDQW�KHDW�IOX[�ERXQGDU\�FRQGLWLRQV��
�
���5()(5(1&(6�
>�@� 6KDK�5��.��DQG�/RQGRQ�$��/���/DPLQDU�IORZ�IRUFHG�FRQYHFWLRQ�LQ�GXFWV��$GYDQFHV�LQ�+HDW�7UDQVIHU�

HG��E\��,UYLQH��-U��7�)��DQG�+DUWQHWW�-�3���$FDGHPLF�SUHVV��1HZ�<RUN���������
>�@� � 6KDK�5��.�� DQG�%KDWWL�0�� 6��� /DPLQDU�&RQYHFWLRQ�+HDW� 7UDQVIHU� LQ�'XFWV��+DQGERRN� RI� 6LQJOH���

3KDVH�&RQYHFWLYH�+HDW�7UDQVIHU�HG��E\��.DNDF�6���6KDK�5�.��DQG�$XQJ��:���-RKQ�:LOH\�	�6RQV��
�������

>�@� � 0HW]QHU� $�� %��� +HDW� 7UDQVIHU� LQ� 1RQ�1HZWRQLDQ� )OXLGV�� $GYDQFHV� LQ� +HDW� 7UDQVIHU� HGLWHG� E\�
,UYLQH�-U��7��)��DQG�+DUWQHWW�-��3��$FDGHPLF�SUHVV��1HZ�<RUN���������

>�@� �6NHOODQG�$��+��3���1RQ�1HZWRQLDQ�)ORZ�DQG�+HDW�7UDQVIHU��-RKQ�:LOH\�	�VRQV�,QF����������������
>�@� �&KR�<��,��DQG�+DUWQHWW�-��3���1RQ�1HZWRQLDQ�)OXLGV��+DQGERRN�RI�+HDW�7UDQVIHU�$SSOLFDWLRQV�HG��

E\�5RKVHQRZ�:�0���+DUWQHWW�-�3��DQG�*RQLF�(�1���0F*UDZ�+LOO�%RRN�&R����������
>�@� �,UYLQH�-U��7��)��DQG�.DUQL�-���1RQ�1HZWRQLDQ�)OXLG�)ORZ�DQG�+HDW�7UDQVIHU��+DQGERRN�RI�6LQJOH�

3KDVH�&RQYHFWLYH�+HDW�7UDQVIHU�(GLWHG�E\�.DNDF��6���6KDK��5��.���DQG�$XQJ��:����-RKQ�:LOH\�	�
6RQV���������

>�@� � � /DZDO�$�� DQG�0XMXPGDU�$�� 6��� /DPLQDU�'XFW� )ORZ� DQG�+HDW� 7UDQVIHU� WR� 3XUHO\�9LVFRXV�1RQ�
1HZWRQLDQ��)OXLGV��$GYDQFHV�LQ�7UDQVSRUW�3URFHVVHV��(GLWHG�E\�0XMXPGDU��$��6��DQG�0DVKHONDU��5��
$��:LOH\�(DVWHUQ��1HZ�'HKOL��������

>�@�� 6KLQ�6��DQG�&KR�<�,���/DPLQDU�+HDW�7UDQVIHU� LQ�D�5HFWDQJXODU�'XFW�ZLWK�D�1RQ�1HZWRQLDQ�)OXLG�
ZLWK�7HPSHUDWXUH�'HSHQGHQW�9LVFRVLW\��,QW��-�+HDW�0DVV�7UDQVIHU������������6XSSO����������

>�@� �(WHPDG�6��*K���0XMXPGDU�$��6��DQG�1DVVHI�5���6LPXOWDQHRXVO\�'HYHORSLQJ�)ORZ�DQG�+HDW�7UDQVIHU�
RI�1RQ�1HZWRQLDQ�)OXLGV�LQ�(TXLODWHUDO�7ULDQJXODU�'XFW��$SSO��0DWK��0RGHOOLQJ�����������������������

>��@� �(WHPDG�6��*K���0XMXPGDU�$��6�� DQG�+XDQJ�%���9LVFRXV�'LVVLSDWLRQ�(IIHFWV� LQ�(QWUDQFH�5HJLRQ�
+HDW� � 7UDQVIHU� IRU� D� 3RZHU� ODZ� )OXLG� )ORZLQJ� EHWZHHQ� 3DUDOOHO� 3ODWHV�� ,QW�� -�� +HDW� DQG� )OXLG�
)ORZ���������������������



>��@� �(WHPDG�6��*K���0XMXPGDU�$��6��DQG�+XDQJ�%���/DPLQDU�)RUFHG�&RQYHFWLRQ�RI�D�1RQ�1HZWRQLDQ�
)OXLG�LQ�WKH�(QWUDQFH�5HJLRQ�RI�D�6TXDUH�'XFW�ZLWK�'LIIHUHQW�%RXQGDU\�&RQGLWLRQV��3URFHHGLQJ�RI�
��WK�,QW��+HDW�7UDQVIHU�&RQIHUHQFH��%ULJKWRQ��8�.����������������������

>��@� (WHPDG� 6�� *K�� DQG� 0XMXPGDU� $�� 6��� (IIHFWV� RI� 9DULDEOH� 9LVFRVLW\� DQG� 9LVFRXV� 'LVVLSDWLRQ� RQ�
/DPLQDU�&RQYHFWLRQ�+HDW�7UDQVIHU�RI�D�3RZHU�/DZ�)OXLG�LQ�WKH�(QWUDQFH�5HJLRQ�RI�D�6HPL�&LUFXODU�
'XFW��,QW��-��+HDW�0DVV�7UDQVIHU�����������������������

�
� ��

� � � � � � � � � � � �

�

������
������

������
�����

�����
�����

����
����

�����

�

��

��

��

��

��

�

����

����

����

����

���

1X
+�
[

��E��
[


+�E�F�

T E
�[

% ���
% ����
% ����

��

� � �
)LJXUH���D���G���(IIHFW�RI�WHPSHUDWXUH�GHSHQGHQW�YLVFRVLW\�RQ�WKH�1XVVHOW�QXPEHU�IRU�FLUFXODU�
DQG�WULDQJXODU�GXFW��5H �����3U ������
� �

������
������

������
�����

�����
�����

����
����

�����

�

��

��

��

��

��

���

���

���

���

���

�

��D��
[


7�E�F�

1X
7�[ T E
�[

% ���
% ���
% ���

�

��J��
[


7�E�F�

1X
7�[ T E
�[

% ���
% ���
% ���

�

D  ��$

������
������

������
�����

�����
�����

����
����

�����

�

��

��

��

��

��

���

���

���

���

���

�

��K��
[


+��E�F�

% ���
% ����
% ����

1X
+�
�[

T E
�[

�

D  ��$

������
������

������
�����

�����
�����

����
����

�����

�

��

��

��

��

��

�

����

����

����

����

���

�F�� �G��



Proceedings of the Tenth Asian Congress of Fluid Mechanics 
17-21 May 2004, Peradeniya, Sri Lanka 
 
 
A NUMERICAL STUDY ON INJECTION SYSTEM IN SUPERSONIC FLOW 

 
Rafiqul Hoque 

Institute of Information and Communication Technology, BUET, Dhaka 1000, Bangladesh 
 

Mohammad Ali 
Department of Mechanical Engineering, BUET, Dhaka 1000, Bangladesh 

 
ABSTRACT: The present study involves the investigations of supersonic flow and mixing fields with the 
injection. Numerical simulations are performed by the two-dimensional Navier-Stokes equations. The focus 
of this paper is to study the means of increasing the penetration and mixing efficiencies. The distance of 
injector position from left wall is varied. The investigations show that shorting the distance of the injector 
from the wall increases the mixing efficiency but decreases the flame holding capability. For a moderate 
distance of 20 mm, the configuration could act as a good flame holder and efficient in mixing. With long 
distance both the mixing efficiency and flame holding capability are reduced. 
 
1. INTRODUCTION 
       Mixing of fuel with oxidizer and their combustion are encountered in many engineering applications.  
Particularly, the fuel injection in both supersonic and hypersonic streams requires special attention for 
efficient mixing and stable combustion. Though considerable volume of research has been carried out on 
mixing and combustion of fuel with supersonic air stream, still it faces many unresolved problems. The 
main problems that arise in this regard concern mixing of reactants, ignition, flame holding, and completion 
of combustion. Investigations are required to overcome these problems. In fact, in supersonic combustion, 
high penetration and mixing of injectant with main stream is difficult due to their short residence time in 
combustor. In an experimental study, Brown et al. [1] showed that the spreading rate of a supersonic mixing 
layer decreased drastically with increasing free stream Mach number. A similar conclusion was drawn by 
Papamoschou et al. [2] on the basis of a theoretical analysis of shear-layers. These investigations showed 
that difficulty exists in achieving a high degree of mixing in high Mach number flows. There exist several 
methods of fuel injection in supersonic stream. Perpendicular injection causes rapid mixing of injectant 
with main stream and is used to some degree at all flight Mach numbers to promote mixing particularly in 
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                                  Fig. 1 Geometric Configuration 
upstream portion of the combustor. This study is a part of the M.Sc. research done of Hoque [4] where the 
effect of injector position from left boundary is investigated for a constant Mach number. The geometric 
configuration of the calculation domain and the inlet conditions of main and injecting flows is shown in 
Fig. 1. In all cases, the left boundary of domain consists of a backward facing step of height 5 mm, a main 



flow inlet of height 1.35 cm and a solid wall of height 3.6 cm. The backward facing step of 5 mm was used 
because it was found to be most efficient in mixing for the conditions considered by Ali et al [5]. In this 
study the parameter is injector distance.  The inlet conditions of air are as in Weidner et al [6]. A Mach 
number of 4 was used while the distance of the injector was varied from left boundary (2, 3, 4, 5 cm) as 
variable and investigated the penetrating and mixing efficiency. The inlet widths of air and side jet are as, 
in Ali et al [7], which showed good performance in mixing. Throughout the study, a grid system of 194 
nodes in the longitudinal direction and 121 in the transverse direction was used. 
 
2. MATHEMATICAL DESCRIPTION 
         The flow field is governed by the unsteady, two-dimensional Navier-Stokes and species continuity 
equations. The body forces are neglected. With the conservation-law form, these equations can be 
expressed by  
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3. RESULTS AND DISCUSSION 
         Results of varying distance are to be analyzed and discussed under the following subsections; (i) the 
physics of fluid dynamics in both upstream and downstream of the injector (ii) penetration and mixing of 
hydrogen under the variation of these parameters. 
 
3.1 The Physics of Fluid Dynamics 

    
                                Fig. 2 (a)                                                                                Fig. 2 (b) 
 

       
                               Fig. 2 (c)                                                                                 Fig. 2 (d) 
 
Fig. 2 Velocity vector near injector;  (a)  case -1 (d=20mm),  (b) case -2 (d=30mm) , (c) case -3 (d=40mm), 

(d) case -4 (d=50mm) 
            
        The physics of flow is important to understand the penetration and mixing of hydrogen, which is the 
special interest of this study. Figure 2(a~d) shows the velocity vector in both upstream and downstream of 
injector. Strong interaction is occurring between the main and injecting flows in case 1 shown in Figure 
2(a). The strength of interaction can be understood from the slope of vectors at the top of injector. For long 
distance of injector position both main and injecting flows lose their strength due to viscous action and 
upstream recirculations. There are two recirculations in upstream of the injector observed in figure  2(b), 
(c) and (d). Due to small space in upstream, two very small recirculations (one is primary and the other is 
secondary) exist. With the increase in distance of injector the recirculations are increasing in areas and the 
primary one expands towards the left though the pattern of expansion is different. In case 1, recirculations 
are not strong and the upstream region is seemed to be stagnant, whereas cases 2 ~ 4 have strong 
recirculations due to wide space in upstream. In the downstream  no strong recirculation exists.  
 
3.2 Penetration and Mixing of Hydrogen 
         Figure 3(a~d) shows the penetration and mass concentration of hydrogen in the flow field. There are 
various definitions of penetration in literature. In this paper the term penetration refers to the edge of 
mixing region in the vertical direction where the mole fraction of hydrogen is 5%. Accordingly figure 3 
shows that there is little difference in penetration at both upstream and downstream of the configurations. 
Two competing phenomena are activated in this regard; (i) due to strong interaction in small distance of 
injector, high gradient of hydrogen mass concentration exists causing high penetration of hydrogen, and (ii) 
in longer distance of injector, large and elongated upstream recirculation causes high penetration dominated 
by convection of recirculation. The mass concentration of hydrogen in upstream and that in downstream 
can be explained separately. For short injector distance, most of the upstream region contains high 
concentration of hydrogen. It can be pointed out that the flame holding requires longer residence time of 



flame in the burning range and this residence time strongly depends on the geometric expansion 
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Fig. 3 Mole fraction counter of Hydrogen, Φ(0.05, 1.0, 0.05); (a)  case -1 (d=20mm),  (b) case -2 (d=30mm), 
(c) case -3 (d=40mm), (d) case - 4 (d=50mm) 

 
of the recirculation zone [8]. Also the equivalence ratio of fuel and oxidizer in mixture is an important factor 
for burning because among the mixture, the stoichiometric strength is good for combustion. Therefore, 
longer recirculation zone containing stoichiometric mixture strength results in a longer residence time and 



leads to a more stable flame. The cases having injector distance d = 20, 30 and 40 mm can produce larger 
and elongated upstream recirculation where most of the region contains good proportion of hydrogen and 
oxygen (mole fraction is about 0.4~0.7) exists. Again for d = 50 mm, far upstream (d = 0~17.5 mm) 
contains lower mass concentration of hydrogen which is not good for flame holding. In far downstream the 
hydrogen distribution is seemed to be better (more uniform) in cases 3 ~ 4 than that in cases 1 ~ 2. This 
uniform distribution of hydrogen is caused by higher expansion of side jet. However, the uniform 
distribution does not mean higher mixing efficiency, which will be discussed later. The performance of 
different cases is evaluated by calculating mixing efficiency. Mathematically, the mixing efficiency is 
defined by  
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                                  Figure 4  Mixing efficiency 
 

Figure 4 shows mixing efficiency along the length of physical model for different cases. In upstream 
region, the increasing rate of mixing is moderate and in downstream it is very slow. Individually, case 1 has 
the highest increment of mixing efficiency at injector position due to strong interaction of main and 
injecting flows as discussed earlier. Besides, case 4 shows that in upstream the overall mixing efficiency 
(about 14.7%) is lower than the other cases. The mixing efficiency of case 1 is higher than that of cases 2 ~ 
4 on the top of injector. In downstream, the increasing rate of mixing is slower for all cases caused by the 
supersonic nature of flow.  
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4. CONCLUSION 
         It has been found that in case of varying injector distance, strong interaction between the main and 
injecting flows occurs for short injector distance. For long injector distance both main and injecting flows 
lose their strength due to viscous action and upstream recirculation. Short injector distance does not have 
strong recirculation but long injector distances have strong recirculations due to wide space in upstream. 
Short injector distance increases the mixing efficiency but decreases the flame holding capability. In 
conclusion, the range of setting the injector is 20~30mm, preferably near 20mm, by which the 
configuration might act as a good flame holder and become efficient in mixing. For very long distance of 
injector position (40 mm or more), the configuration reduces both the mixing efficiency and flame holding 
capability. 
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