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ABSTRACT: A review is given on the study of small-scale statistics in high Reynolds number 
turbulence by using the data of high resolution direct numerical simulation of incompressible turbulence 
with the number of grid points and the Taylor-scale Reynolds number up to 40963 and approximately 
1130, respectively. An emphasis is put on the dependence of the small-scale statistics on the Reynolds 
number and the scale. A review is also given on a theory of the anisotropy in small-scale statistics in 
turbulent shear flow, stably stratified turbulence and magneto-hydrodynamic turbulence under a strong 
uniform magnetic field. 
 
1. INTRODUCTION 
  In 1941, Kolmogorov[9] (hereafter referred as K41) proposed an idea of universal equilibrium range and 
universality in small-scale statistics in turbulence at high Reynolds number far from flow boundaries. 
According to this idea, there is a certain kind of universality in the statistics, which is insensitive to the 
details of the large-scale flow conditions. The understanding of the universality may provide us with a 
sound basis for constructing turbulence models. The idea has been supported by experiments and direct 
numerical simulations (DNSs), and it is at the heart of modern theories of turbulence. The idea also 
justifies the use of simple boundary conditions, such as periodic boundary conditions, and simple large-
scale forcing for the study of the small-scale statistics in high Reynolds number turbulence by DNS. 
  This paper presents a review of the analysis of high resolution DNS data of incompressible turbulence, 
with an emphasis on the dependence of the small-scale statistics on the Reynolds number Re and the scale. 
The DNSs consist of two series of simulations of forced turbulence obeying the Navier-Stokes equation in 
a periodic box with the number of the grid points up to 40963; one is with k maxη ~1 (Series 1) and the 
other is with k maxη ~2 (Series 2), where k max is the highest wave number in each simulation, and η is the 
Kolmogorov length scale.[5,12] The DNSs were performed on the Earth Simulator with sustained 
performance up to 16.4 Tflops, and are based on a spectral method free from alias error. In the 40963 
DNSs, the Taylor-scale Reynolds number Rλ is approximately 1130 (675) in Series 1 (Series 2).  
  The analysis of the DNS data has shown new aspects of the small-scale statistics of turbulence, 
including (i) the normalized mean energy dissipation rate, (ii) the energy spectrum, (iii) the third order 
velocity structure function, (iv) intermittency of energy dissipation, and (v) the energy cascade from large 
to small scales.       
  A review is also given on a theory of the anisotropy in small-scale statistics in turbulent shear flow, 
stably stratified turbulence and magneto-hydrodynamic turbulence under a strong uniform magnetic field. 
A simple analysis suggests that at small scale, the effect of mean shear, buoyancy, and external magnetic 
field may be regarded as a disturbance applied to the locally homogeneous and isotropic universal 
equilibrium state. The theoretical predictions are in good agreement with DNSs.  
 
2. ENERGY DISIIPATION AND SPECTRUM 
   One of the most characteristic features of high Reynolds number turbulence is the existence of a wide 
gap between the scales of the energy containing range and dissipation range.  In our DNSs the ratio L/ η 
of the integral length scale L to η  is approximately 2130 (1040), in Series 1 (Series 2). The DNS data 
with such a wide separation may shed some light on fundamental questions on turbulence.      
   Among such questions is the one on the normalized dissipation rate D= ε L/U3, where ε  is the 
average of the kinematic energy dissipation rate ε  per unit mass, and U2/2 is the total kinetic energy per 
unit mass of the fluctuating velocity field with zero mean. One may ask if D remains finite, or tends to 0, 
as Re ∞→ , i.e., the kinematic viscosity ν 0→ , with U and L kept constant.  It is one of the most 
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fundamental assumptions in various theories of turbulence that it tends to a finite non-zero constant 
independent of Re, as Re ∞→ . 
  The data analysis by Kaneda et al.[5] showed that the DNS with Rλ  up to approximately 1130 strongly 
supports this assumption. This implies that the turbulence with finite but very small ν is essentially 
different from the motion of ideal fluid in which there is no energy dissipation. 
  Another question of fundamental interest is on the energy spectrum )(kE , which is one of the most 
representative measures characterizing turbulence consisting of eddies over a wide scale range. One may 
ask if the DNS supports the prediction of K41 for the spectrum. According to K41, there is a universal 
equilibrium range of the wave number k >> 1/L, where )(kE is a universal function of only k, ν, and ε . 
In particular, in the inertial subrange 1/L << k<<1/η , K41 gives the -5/3 law,     

                                                               3/53/2
)( −= kKkE oε , 

where oK  is a universal constant independent of k. The DNS data fit well to the -5/3 law with oK  
=1.6~1.7.  In the near dissipation range, where kη ~1, the DNS data fit well to the form 

                                              )](exp[)()/()( 4/15 ηηνε kbkCkE a −=    , 
where C, a and b are constants independent of k.  The DNS data suggest that (C, a, b) →  (0.044, -2.9, 
0.62) as Rλ ∞→ . However, the approach is very slow; for example even at Rλ  ~ 10,000, 

)(/|)()(| ∞→∞→− λλλ RbRbRb  is as large as approximately 2.61.[3] 

 
3. EXAMINATION OF KOLMOGOROV’S 4/5 LAW  
  Experiments and DNSs so far made generally support the idea of K41, at least for low order moments 
such as the energy spectrum and 2nd and 3rd order structure functions.  It is however to be noted that the 
idea of K41 on the universality concerns with the asymptotic state at Re and L/r ∞→ . On the other 
hand, in any real turbulence and DNS, Re and L/r can be only finite, whatever large they may be. One 
may then ask if Re and L/r in the turbulence in one’s consideration high enough or not for the universality. 
To answer this question, we need have quantitative understanding on the dependence of the statistics on 
Re and L/r.  
  In this respect, it may be instructive to consider the 4/5 law derived by Kolmogorov[10], according to 
which          

                                                  rrurD LLLL εδ
5
4)]([)( 3 −>=>≡<< ,                                                        (1) 

in the inertial subrange of homogeneous isotropic turbulence, where )(ruLδ  is the longitudinal velocity 
difference at two points with distance r. The relation (1) is exact in the limit of Re, L/r, r/η ∞→ , and 
posses a unique position, since such an exact non-trivial relation is rare in turbulence study. 
 

          
 
Fig.1. Normalized structure function )/()( rrD LLL ε><−  by DNSs at R　 labeled in the figure. The solid line is 
by a simple theory.  From Ref. 8. 

2/4



 
Proceedings of the 12th Asian Congress of Fluid Mechanics                                                       ACFM No.1000*** 
18-21 August 2008, Daejeon, Korea 

  Figure1shows the DNS data for the normalized structure function )/()()( rrDrD LLL ε><−≡ . As seen 
in Fig.1, )( rD  is not exactly 4/5, in contrast to the theory (3), due to the finiteness of Re, L/r and r/η.  
The deviation )(5/4)( rDr −≡δ is large for small r and large r . The range where )( rD is close to 4/5 
and almost flat is wider for larger Rλ. An analysis shows that the deviation δ(r) consist of the 
contributions representing (i) viscous effect, (ii) external forcing, (iii) non-stationarity, and (iv) anisotropy 
of the statistics. In almost stationary turbulence with external forcing confined at large scale, the 
contribution of (iii) is negligible, and that of (ii) scales with r as 2)/( Lr∝ , for small 2)/( Lr . A simple 
theory shows that the contribution of (i) scales with r as 3/4)/( rη∝ in the inertial subrange.  A comparison 
of such a theory with the DNS data is shown in Fig. 1, and the theory is seen to be in good agreement 
with DNS.[8] 
 
4. INTERMITTENCY OF ENERGY DISIIPATION 
  High Re turbulence exhibits strong intermittency at small scales.  It is manifested at high order statistics. 
In order to explain the intermittency, Kolmogorov[11] introduced the kinetic energy dissipation rate ε(r|x,t) 
at time t averaged over the sphere of radius r center at position x. For εn defined by εn = ε( rn|x,t ) with rn 
= r0 an , where a is a constant greater than 1, and r0=L, the well-known decomposition 
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The relations (2) and (3) suggest the importance of quantitative understanding on the statistics of the 
break down ratio αn or equivalently log αn for the understanding the statistics of the intermittency of ε. 
  There have been various studies of the intermittency by assuming certain statistical nature of αn, or un 
=log αn/log a. In such studies, it is often assumed that (i) un’s (n=0,1,2, …) are statistically independent 
from each other, and/or (ii) the statistics of un is independent of n in the inertial subrange. 
  The analysis of the DNS data with Rλ up to 732 suggests that (i) the statistical dependence between un’s  
has significant influence on the statistics of ε, and (ii) DNS does not support the conjecture of the 
existence of a scale range satisfying (ii), as seen in Fig.2.[6]  But the analysis also suggests the existence of 
a range where the correlation between un and un+m is insensitive to n. 

 
Fig.2. The mean mu (solid lines, left scale) and the standard deviation σu (dotted lines, left scale) of un vs L/r with 
r=rn in a series of DNSs, Run256, 512,1024 and 2048, for which Rλ ~167,257,471 and 732, respectively.  From Ref.6. 
 
5. ENERGY TRANSFER 
  The statistics of the energy transfer from large to small scales is one of the most basic statistics 
characterizing the inertial subrange dynamics. Let T(k) be the energy transfer defined by 

ijijij SkT τΣ−=)( with ,)3/2( qvvvv ijjijiij δτ −−= )()2/1( kkkkk vvvvq −Σ= , )//)(2/1( ijjiij xvxvS ∂∂+∂∂= , 
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iv is the i-th Cartesian velocity component, f is the grid scale component of f , and we use the so-called 

spectral cut-off filter to define f , by which all the Fourier modes of f  with wave number larger than the 
cut-off wave number k are removed. 
  The DNS data shows that T(k) is highly intermittent and the skewness S and the flatness factor F of T(k) 
scale with k like S ∝ (kL)a and F ∝ (kL)b , where a~2/3 and b~1.[1]  The comparison of the statistics of 
T(k), ε and ε(r|x,t) shows that T(k) is less intermittent than ε , but there is a certain similarity between the 
probability distribution function of T(k) and ε(r|x,t), where k= π/(2r).[1]

 
 
6. UNIVERSALITY OF THE SECOND KIND 
  The statistical mechanics of systems at or near thermal equilibrium presents a paradigm of the study of 
systems with a huge number of degrees of freedom (DOF). In the study, it is known that there are two 
kinds of universal relations; one is those characterizing the equilibrium itself, and the other is those 
characterizing the responses to disturbances added to the equilibrium system. We call here the latter 
“universality of the second kind”. The relations belonging to the latter may be written symbolically as 
J=CX, where the generalized flux and force (J, X), which represent the response and the disturbance 
respectively, may be (scalar gradient, density flux), (temperature gradient, heat flux), (electric field, 
electric current), etc. The coefficient C reflects the equilibrium state of the system. 
  Turbulence is also a phenomenon involving a huge number of DOF, and it is tempting to assume that 
there are two kinds of universal relations also in turbulence statistics. This idea was applied to turbulent 
shear flow by Ishihara et al.[4]. It is shown that in the inertial subrange, the turbulence is dominated by the 
inherent Navier-Stokes dynamics without mean shear, and the effect of mean shear may be regarded as a 
perturbation added to the universal equilibrium state. The theoretical conjectures were shown to be in 
good agreement with high-resolution DNSs of turbulence under a mean flow of a simple shearing motion. 
The idea was also applied to strongly stably stratified incompressible turbulence obeying the Boussinesq 
equation[7], and also to magneto-hydrodynamic turbulence under strong uniform magnetic field obeying 
the so-called adiabatic equations[2] . The idea was confirmed to be consistent with DNS.  
 
ACKNOWLEDGMENT 
  This work was partially supported by Grant-in-Aid (B)20340099 from the Japan Society for the 
Promotion of Science.  
 
REFERENCES 
[1]    Aoyama T, Ishihara T, Kaneda Y. Statistics of energy transfer in high-resolution direct numerical simulation of 

turbulence in a periodic box. J. Phys. Soc. Japan 2005, 74 (12), 3202-3212 
[2]    Ishida T and Kaneda Y. Small-scale anisotropy in magnetohydrodynamic turbulence under a strong uniform 

magnetic field. Physics of Fluids 2007, 19(7), 075104 
[3]    Ishihara T, Kaneda Y, Yokokawa M, Itakura K, Uno A. Energy spectrum in the near dissipation range of high   

resolution direct numerical simulation of turbulence. J. Phys. Soc. Japan 2005, 74(5), 1464-1471 
[4]    Ishihara T, Yoshida K, Kaneda Y. Anisotropic velocity correlation spectrum at small scales in a homogeneous   

turbulent shear flow. Phys. Rev. Lett. 2002, 88(15), 154501 
[5]    Kaneda Y, Ishihara T, Yokokawa M, Itakura K, Uno A. Energy dissipation rate and energy spectrum in high    

resolution direct numerical simulation of turbulence in a periodic box. Phys. Fluids 2003, 15(2), L21-24 
[6]    Kaneda Y and Morishita K. Intermittency of energy dissipation in high-resolution direct numerical simulation   

of turbulence. J. Phys. Soc. Japan 2007, 76 (7), 073401   
[7]     Kaneda Y and Yoshida K. Small-scale anisotropy in stably stratified turbulence, New J. Physics 2004, 6, 34 
[8]    Kaneda Y, Yoshino J, Ishihara T. Examination of Kolmogorov's 4/5 law by high-resolution direct numerical   

simulation data of turbulence. to appear in J. Phys. Soc. Japan. 
[9]   Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds 

number. Dokl. Akad. Nauk SSSR 1941, 30(4), 301-305 
[10]  Kolmogorov AN. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 1941,32(1), 

16-18 
[11]   Kolmogorov AN. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous 

incompressible fluid at high Reynolds number. J. Fluid Mech. 1962, 13(1), 82-85 
[12]   Yokokawa M, Itakura K, Uno A, Ishihara T, Kaneda Y. 16.4-Tflops direct numerical simulation of turbulence 

by a Fourier spectral method on the Earth Simulator. Proceedings of IEEE/ACM SC2002 Conf., Baltimore,   
2002; http://www.sc-2002.org/paperpdfs/pap.pap273.pdf.   

4/4


