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ABSTRACT: This paper summarizes our development and application of lattice Boltzmann method. It 
covers the development of a platform to design lattice velocity model and its associated equilibrium 
distribution functions, Taylor series expansion- and least square-based lattice Boltzmann method, 
simplified thermal lattice Boltzmann model, fractional step lattice Boltzmann model for high Reynolds 
number flows, lattice Boltzmann models for micro flows and multiphase flows with high density ratio, 
compressible lattice Boltzmann model, and lattice Boltzmann-immersed boundary velocity correction 
method. 
 
1. INTRODUCTION 

As an alternative computational fluid dynamics approach, the lattice Boltzmann method (LBM) 
receives more and more attention in recent years [1]. LBM is a particle-based approach, which does not 
involve the solution of partial differential equations and their resultant algebraic equations. Thus, its 
implementation and coding are very simple. Currently, LBM has been widely applied to simulate various 
fluid flow problems. The group in the National University of Singapore also put a lot of effort and made 
substantial contributions in the development of LBM and exploration of its applications in various areas 
of heat transfer and fluid flows. This paper summarizes our progress in the development and application 
of LBM.  
 
2. PLATFORM FOR DEVELOPING NEW LATTICE VELOCITY MODELS 

Take the two-dimensional case as an example. The standard lattice Boltzmann equation (LBE) with 
BGK approximation can be written as 

( , , ) ( , , )
( , , ) ( , , )

eq

x y
f x y t f x y t

f x e t y e t t t f x y t α α
α α α αδ δ δ

τ
−

+ + + = + , 0,1,..., ,Nα =  (1) 

where τ  is the single relaxation time; fα  is the density distribution function along the α direction; eqfα  
is its corresponding equilibrium state, which depends on the local macroscopic variables such as density ρ 
and velocity u(u, v); tδ  is the time step and ( , )x ye e eα α α  is the particle velocity in the α direction; N is 

the number of discrete particle velocities. The macroscopic density ρ and momentum density ρu are 
defined as  
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The expression of eqfα  depends on the lattice velocity model. Currently, there are many lattice velocity 
models available in the literature such as D2Q7, D2Q9, D3Q15, D3Q19. These models work very well. 
However, many users do not know how these models were developed and whether new models can be 
developed in such a way that Navier-Stokes equations can be recovered. To answer these questions, 
Zheng et al. [2] proposed a platform which is based on the construction of discrete velocity models that 
satisfy the isotropic property of lattice tensor, conservation laws, and recover Navier-Stokes equation. 
From the platform, we can easily determine the equilibrium distribution functions. For details, one can 
refer to the work of [2]. 
 
3. DEVELOPMENT OF EFFICIENT LATTICE BOLTZMANN SOLVERS 

In this section, we will introduce three efficient lattice Boltzmann solvers for the application of LBM 
on irregular domains and at high Reynolds numbers. 
 
3.1 Taylor series expansion- and least square-based lattice Boltzmann method (TLLBM) 
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The standard LBM is usually limited to the application on the regular domain with the use of uniform 
mesh. In order to implement LBM more efficiently for flows with arbitrary geometry, the Taylor series 
expansion- and least square-based lattice Boltzmann method (TLLBM) [3] was proposed. TLLBM is 
actually based on the standard LBE, the well-known Taylor series expansion, the idea of developing 
Runge-Kutta method, and the least squares optimization. It is free of lattice models. Theoretical analysis 
for one-dimensional case showed that TLLBM could recover the Navier-Stokes equations with the second 
order of accuracy. At a mesh point 0 0x y( , ) , the density distribution function along the α direction at the 
time level t+δt can be updated by TLLBM as 
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where 1,kaα  are the coefficients, which only depend on the coordinates of mesh points and lattice velocity, 

and are pre-computed before the TLLBM is applied, kgα  is the post-collision distribution function at the 
neighboring mesh point k kx y( , ) , which can be written as 

eq
k k k k k k kg f x y t f x y t f x y tα
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The application of TLLBM is very simple. The coefficients 1,kaα  are only computed once and stored for 
the following computations. Fig. 1 shows the streamlines in a polar cavity at Re=350 obtained by 
TLLBM using a non-uniform mesh of 81×81. Clearly, the TLLBM results compare excellently well with 
those from a Navier-Stokes solver. Good agreement was achieved in the size of the vortices and location 
of the separation and reattachment points. 

  
 

 TLLBM result  N-S solution  
 

Fig. 1 Comparison of streamlines between TLLBM result and N-S solution 
 
3.2 Simplified Thermal Lattice Boltzmann Model 

As compared to the application of LBM for isothermal flows, there are very few applications of LBM 
for thermal flows. The main reason is due to severe numerical instability for the thermal models. Among 
various thermal lattice Boltzmann models, the double distribution function model proposed by He et al. 
[4] is the most popular one. However, there exist some shortcomings for this thermal model. On one hand, 
it contains one complicated gradient operator term in the evolution equation for the temperature, and thus 
the simplicity property of LBM is lost. On the other hand, since the viscosity is involved not only in the 
momentum equation but also in the energy equation, the new variables for the double distribution 
functions are introduced so as to keep the viscosity consistent in the governing equations for the double 
distribution model and to avoid the implicitness of the scheme. The governing equations are transformed 
to the forms whose variables are the new density distributions. On the other hand, the simple bounce-back 
condition for the non-equilibrium functions is the relationship for the old density distributions. Such 
relationship becomes very complicated after changing to the new forms for the new variables, since the 
evolution equations are for the new variables. This leads to the loss of one good feature for LBM that 
boundary condition can be easily implemented. To remove these drawbacks, Peng et al. [5] proposed a 
simplified double distribution thermal model, which is based on the assumption that in real 
incompressible applications, the compression work done by the pressure and the viscous heat dissipation 
can be neglected. Numerical study found that the complicated gradient operator term in the original 
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double distribution thermal model is mainly used to recover the compression work and the viscous heat 
dissipation. So this term is intentionally thrown away by the simplified model. After this simplification, 
there is no viscous term in the evolution equation for the new density distribution function, thus, there is 
no need to introduce new variables to keep the viscosity the same for both governing equations. As a 
result, the above mentioned two shortcomings for the original double distribution model can be overcome. 
The details of the simplified thermal model can be found in [5]. In the application, the idea of TLLBM is 
also incorporated in the simplified thermal model so that thermal problems with curved boundary and the 
use of non-uniform mesh can be easily resolved. Fig. 2 shows the streamlines and isotherms obtained by 
the simplified thermal model for natural convection in a concentric annulus between an outer square 
cylinder and an inner circular cylinder at Ra=106 and aspect ratio of 1.67. The results are compared well 
with those from Navier-Stokes solvers. 
 

  
 Streamlines Isotherms 

 
Fig. 2 Streamlines and isotherms for Ra=106 and rr=1.67 

 
3.3 Fractional Step Lattice Boltzmann Model for High Reynolds Number Flow 

The application of LBM is very simple as it only involves algebraic operation. On the other hand, it 
also suffers some drawbacks. One of them is the poor stability condition at high Reynolds number. 
According to the stability analysis, the relaxation parameter 0 5τ = .  is the margin of instability. When the 
Reynolds number is large, the viscosity ν is very small. As a consequence, τ will approach to 0.5 if the 
number of mesh points is not very large. In addition, as compared with the N-S solvers, more memory is 
needed in LBM to store the density distributions. To improve LBM for the application at high Reynolds 
numbers, Shu et al. [6] proposed the fractional step lattice scheme, where the efficient fractional step 
method is introduced into LBM, and the computation is taken by two steps. In the first step, the relaxation 
parameter τ is fixed as 1, which is well in the stability region of LBM computation. The viscosity in this 
step is fixed. Then in the second step, the real viscosity is compensated by using the fractional step 
method to solve a linear diffusion equation. In the scheme, the dependent variables are macroscopic 
density and velocity. So, the physical boundary conditions can be directly and easily implemented. The 
details of fractional step lattice Boltzmann model can be found in [6]. Fig. 3 shows numerical results of 
an extreme case of zero value of viscosity (Reynolds number is infinity) obtained by the fractional step 
LBM. Obviously, the flow attaches to the surface, and there is no vortex developed behind the cylinder or 
vertical plate.  
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 Flow past a circular cylinder Flow past a vertical plate 

 
Fig. 3 Simulation of inviscid flows by fractional step LBM 
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4. LATTICE BOLTZMANN MODEL FOR MICRO FLOWS 
The key factor in the LBM is the relaxation parameter τ, which can be determined from the viscosity ν 

by the following relationship,  
( ) 2-1/ 2 sc tυ τ δ=  (5) 

Note that the above relation is derived through the Chapman-Enskog multi-scale expansion in such a way 
that the obtained macroscopic variables from LBM satisfy Navier-Stokes equations. This means that 
equation (5) is implicitly based on the continuum assumption. As we know, the reference length in micro 
flows is very small, and the continuum assumption may not be valid. So, to apply LBM for simulation of 
micro flows, we have to abandon equation (5) and set up a new relationship between τ and the Knudsen 
number, Kn. Another important issue is that there are velocity slip and temperature jump in micro flows. 
Therefore, the bounce back rule used in the conventional LBM cannot be applied. From the kinetic theory, 
Lim et al. [7] and Niu et al. [8] established a new relationship between τ and Kn and proposed the diffuse 
scattering boundary condition to account for the slip condition on the wall. These new ways enable LBM 
to simulate micro flows effectively. Fig. 4 shows the non-linear pressure distribution along a micro 
channel obtained by the new LBM solver. Clearly, the LBM results compare very well with the 
experimental data of UCLA group both in the slip flow and transition regimes. 
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Fig. 4 Comparison of non-linearity of pressure distribution for a micro channel flow 

 
5. LATTICE BOLTZMANN MODEL FOR MULTIPHASE FLOWS WITH HIGH 
DENSITY RATIO 
 

 
 (a) Step=1000 (b) step=3000 (c) step=4000 (d) step=6000 

 
 

Fig. 5 The flow pattern of a bubble rising under buoyancy with density ratio of 1000 
 

As LBM is very simple in implementation, it is a natural demanding to develop a lattice Boltzmann 
model to simulate multiphase flows. Currently, there are several models developed for multiphase and 
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multi-component flows. They are color method, potential method and free energy method. All these 
methods regard the interface as a transition layer (diffuse interface). The color and potential methods do 
not explicitly describe the evolution of the interface. They regard the region with non-zero gradient of 
density difference as the interface. In contrast, the free energy method captures the interface by solving a 
convection-diffusion equation. A distribution function is designed to solve this equation. By using the 
Chapman-Enskog expansion, it was found that all the existing methods did not completely recover the 
lattice Boltzmann equation for interface to the Cahn-Hilliard equation. The efficiency is also not good. In 
addition, all the methods use the nine bits discrete velocity model in 2D interface capturing and fifteen or 
even more bits discrete velocity model in 3D interface capturing. To solve these problems, Zheng et al. [9, 
10] proposed a new lattice Boltzmann interface capturing method, which can recover the lattice 
Boltzmann equation to the Cahn-Hilliard equation without any additional terms and it can keep the 
Galilean invariance property. In addition, the potential form of the surface tension related term is applied 
to reduce the spurious currents. As a consequence, the large density difference is incorporated in the 
interface capturing equation. Thus, it can be used to model multiphase flows with large density ratio 
which can be above 1000. Fig. 5 shows the flow pattern of a bubble rising under buoyancy with density 
ratio of 1000, where the red curves represent the bubble shapes (interfaces), which are defined as the 
position of zero value of order parameter. These results are in line with the experimental findings. For all 
the cases, a pair of vortex is first formed inside the bubble at beginning. Due to buoyancy force, the 
bubble will move upwards. In the meantime, the middle part of the bubble will encounter a larger 
deformation due to the hit of surrounding water.  
 
6. LATTICE BOLTZMANN MODEL FOR COMPRESSIBLE FLOWS WITH STRONG 
SHOCK WAVES 
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Fig. 6 Density (left) and internal energy (right) contours of the double Mach reflection problem 
 
In the LBM application, one of the key issues is the determination of the equilibrium distribution 

function. For isothermal flows, it can be simplified from the Maxwellian distribution function by the 
Taylor series expansion in terms of Mach number. The coefficient in the equilibrium distribution function 
depends on the temperature (T). For the incompressible isothermal flow, T can be considered as a 
constant. Thus, the coefficient will not generate temperature gradient when the Chapman-Enskog 
expansion is applied. As a result, Navier-Stokes equations can be well recovered. However, when the 
compressible flow is considered where the temperate is changed, the coefficient in the equilibrium 
distribution function will generate additional terms of temperature gradient in the process of Chapman-
Enskog expansion, which do not exist in the macroscopic governing equations. This is one of reasons 
why the conventional equilibrium distribution function cannot be applied to the compressible flow. 
Another reason is the limitation of small Mach number resulted from the Taylor series expansion in terms 
of Mach number. To apply the technique of LBM for simulation of compressible flows, Qu et al. [11] 
proposed an innovative way to construct the equilibrium distribution function for compressible flows by 
using the simple circular function. With this scheme, some supersonic flows with weak and strong shock 
waves were simulated successfully. Fig. 6 displays the density and internal energy contours of double 
Mach reflection at Mach number of 10. The results agree well with those obtained from the Euler solvers.  
 
7. LATTICE BOLTZMANN-IMMERSED BOUNDARY VELOCITY CORRECTION 
METHOD (LB-IBVCM) 

 
The immersed boundary method (IBM) is an efficient approach for simulation of flows around 

complex geometry and moving bodies. It comes from the concept that the deformation or moving of the 
boundary will yield a force that tends to restore the boundary to its original shape or position. The 
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restoring forces on the boundary are in turn distributed into the surrounding nodes and the flow field with 
a body force is solved over the whole domain including both the inside and outside of immersed body. 
From the solution process, it is obvious that IBM is an iterative procedure to satisfy both the governing 
equation and the boundary condition. However, due to numerical errors, at the converged state, the non-
slip condition is only approximately satisfied. As a result, some streamlines may pass through the solid 
body. This is not true in physics. To remove this drawback, Shu et al. [12] proposed the immersed 
boundary velocity correction method (IBVCM), in which, the velocity correction is made in the vicinity 
of the boundary point to enforce the non-slip boundary condition, and the ad hoc coefficient and the 
force calculation are not required. Due to common feature of using Cartesian mesh, IBVCM can be 
effectively combined with LBM to simulate incompressible viscous flows. Fig. 7 shows the streamlines 
of flow past a circular cylinder at Reynolds number of 40. As shown in the figure, the conventional LB-
IBM results clearly reveal the penetration of streamlines to the cylinder surface. In contrast, the LB-
IBVCM results do not have any penetration at all boundary points since the non-slip condition is 
accurately satisfied. 
 

   
 

(a) Conventional LB-IBM    (b) Present LB-IBVCM 
 

Fig. 7 Streamlines for the flow over cylinder at Re = 40 
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