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ABSTRACT: We study mechanisms of coherent structure decay via direct numerical simulations
(DNS) of a vortex column interacting with external, fine-sale turbulence. Ensemble-averaged statistics
show growth of strong core (Kelvin) waves induced by the external turbulence - surprising, given the
stabilizing effect of rotation in the vortex core. We explore two potential mechanisms of perturbation
growth and core transition: (i) resonant forcing of Kelvin waves by turbulence filaments wrapping
the column, and (ii) growth of optimal transient perturbations. We demonstrate the possibility of
ring-vortex wave resonance even for relatively weak rings. Resonance in the form of amplifying core
dynamics results in sheath-like structures in the core, known to be unstable to a Kelvin-Helmholtz-like
instability. However, this process requires sustained organized ring-like structures over several vortex
turnover times. Amplification of core perturbations in optimal transient modes also occurs through
resonant forcing. Several orders of magnitude growth is possible at even moderate Re (~ 10%) before
the inevitable (linear) decay. We briefly examine the nonlinear evolution of optimal bending modes
and show that such growth reproduces features of vortex interaction with turbulence: enhanced core
diffusion, core perturbation growth, and circulation overshoot. Results from transient growth analysis
suggest the importance of optimal transient modes in governing the decay of turbulent vortices.

1. FLOW EVOLUTION

Consider an isolated, temporally-evolving vortex column periodic along the axias. DNS uses a
modified version of the Fourier pseudospectral method. Simulations are initialized by superposing the
vorticity fields corresponding to a laminar vortex column and a radially compact region of random, fine-
scale fluctuations. The turbulence adjusts to the presence of the mean flow within a few vortex turnover
times. In this transient period, a large fraction of the three-dimensional energy rapidly cascades to
smaller scales, then dissipated. Consequently, the turbulence kinetic energy TKE (figure 1c) decreases
sharply at early times, before settling in to a period of slower decay. The figure plots TKE normalized
by the instantaneous mean velocity and length scales (v and r1). TKE decays faster than the vortex,
and suggests that the flow does not attain an equilibrium (self-similar) state even after several hundred
turnover times, 7. By T' = 400, the flow is nearly laminar, with most of the fluctuation energy located
within the vortex core. While core fluctuation energy in this case decays monotonically, this is not
necessarily the case for other parameter values or initial conditions. Turbulence both within and
outside the core may experience temporary amplification, as discussed later.

Figure 2 plots results for v/, v/, w’ (radial, azimuthal, and axial velocity fluctuations) and the
Reynolds stress for an ensemble of 20 simulations. All plots are at the same stage of evolution.
The ensemble is generated with different random initial conditions for the turbulence, but with all
parameters held constant. There is strong growth of core turbulence energy, with small variations of
turbulence intensity amplitudes within the the vortex core. In contrast, the Reynolds stress shows a
sharp distinction between the core and outside. It varies little among different realizations outside the
core, but shows a large scatter (with nearly zero mean when averaged over all realizations) within the
core.

The simultaneous occurrence of large fluctuation intensities and negligible Reynolds stress within
the core is due to the dominance of wave-like motions therein. The velocity perturbations (over a
wide range of axial and azimuthal wavenumbers) induced by the external threads trigger a set of
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Figure 1: (a) Profiles of mean azimuthal velocity V at early times of evolution; inset shows the profiles
in the vicinity of r1. (b) Profiles of turbulence intensity u. (c) Evolution of volume-integrated turbulence
kinetic energy, scaled by mean velocity peak v1. (d) Enstrophy spectra Z(k) at early times of evolution, when

resolution requirements are the most stringent.
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Figure 2: Components of the Reynolds stress tensor at T' = 15: (a) u/2, (b) v'2, (c) w'2, (d) w'v’, (e) ww’, and
(f) v'w’. Averages obtained over 6, z and 20 realizations. Error bars denote r.m.s. deviation from mean.

Kelvin waves within the core. To understand how core fluctuations amplify, we consider two potential
mechanisms in the following sections. First, we idealize the turbulent flow as an array of axisymmetric
vortex rings surrounding the column. We examine whether relatively weak rings can trigger large-
amplitude waves in the core through resonant forcing. Second, we pursue transient growth analysis to
study the evolution of the largest growing initial perturbations.

2. TURBULENCE-INDUCED VORTEX CORE DYNAMICS (CD)

We construct an idealized flow: a rectilinear vortex column surrounded by an array of identical
vortex rings, coaxial with the column. The key parameters characterizing the flow are the ring-to-
column circulation ratio ¥ = I'g/T'¢, where T'g is the circulation of a single ring and ' the column
circulation, and the vortex Reynolds number Re = I'c /v, where v is the kinematic viscosity. The
initial condition is shown schematically in Figure 3(a). To examine the possibility of resonance, we
look for those values of v and A where the axial advection velocity of an individual ring matches the
wave-speed of core dynamics (CD) in the column.

Figure 3(c) shows core wavespeed and ring speed as functions of \. With decreasing A, ring velocity
increases monotonically. This is due to the increasing contribution from mutually-induced motions, as
illustrated in Figure 3(b). The ring at z4 contributes positive u, and negative u, at the center of the
neighboring ring at zg > z4. The radial velocity contribution at B is canceled by an equal positive

2/6



|_L_4_}_._

A g e 0 05 N 1 15

Figure 3: (a) Schematic of the initial condition. (b) Pattern of meridional streamlines induced by a thin-cored
ring, showing how the mutually-induced velocity contributes to increased ring speed in a ring array. (c¢) Kelvin
wave phase-speeds (solid curves) and ring speeds (dashed) for I'r /T'c values of 0.05, 0.1, 0.15 and 0.2. Here
rrg =0.05,r¢c =1, T¢c =1.
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Figure 4: w contours with levels [0.2,9.,0.4] for v = 0.2 resonance at times ¢t = 5,11,19,27,37 and 51. Here
Re =10* and A\ = 1.1.

u, contribution coming from the ring at z¢, while the axial velocity contributions due to the rings at
z4 and z¢ are additive. With decreasing A, the axial velocity contributions increase, and therefore so
does ¢,.

It is important to note that there are crossing-points of the ¢, and ¢, curves for small values of
~. At these points, the ring advection speed matches the phase speed of the CD wave of wavelength
A. Since the ring-induced perturbation in the column’s core is periodic with wavelength A, it can be
expected that the rings will trigger a CD wave that travels at the same speed as each ring. Thus, one
can expect resonance when the ring array has A that equals that at a crossing point.

In the following, we consider resonant growth at large Re, where the viscous arrest mechanism (i.e.
the homogenization of the ring array) occurs sufficiently slowly for the core waves to grow to a very
large magnitude. Here consider v = 0.2 case (the relatively large v is unfortunately unavoidable due
to numerical constraints, since the lower 7 cases require a Re larger than that we can simulate.) w
contours in a meridional plane (Figure 4) show the generation of a rightward traveling CD wave and
its growth. The advecting vorticity wavepacket in the core acquires a characteristic arrowhead shape,
pointing in the upstream direction, similar to that observed in the case of CD on a polarized vortex
column [1].

As the wave grows through resonance, its nonlinear self-interaction becomes increasingly important.
There eventually comes a stage of evolution when the wave’s amplitude growth results in a retardation
of its wave-speed. This effect can be deduced from w/, evolutions plotted in figures 5(a,b). At the
lower Re (Figure 5a), the w!, curves are nearly sinusoidal with a constant frequency and the evolutions
at zp and z,; remain out-of-phase throughout the period of growth. This behavior is characteristic of
linear CD. At the higher Re (Figure 5b), the slower diffusion of the rings and the weaker dissipation of
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Figure 5: w., evolution for v = 0.2 resonance (a) Re = 5000 and (b) Re = 10,000. Solid curve is vorticity at
zo and dashed at z;. Here A = 1.1.

core perturbation energy allow stronger growth of CD, over the same period of time as at Re = 5000.
In this case, the CD wave’s amplitude is sufficiently large for nonlinear effects to be significant. The
retardation of the wave-speed is reflected in the reduced slopes of the w’ curves at late times (see the
zp curve at 30 < t < 40). Further, the vorticity wavepacket splits into two parts, and the advection of
each packet past the zo plane is evident in the form of two successive maxima (at ¢ = 30 and ¢ =~ 50).
These features of nonlinear core dynamics result from the self-advection term wowy/0z. Note that in
linear CD both w and wy are perturbation quantities. The nonlinear self-advection of the wave causes
the matching between wave phase speed and the ring advection speed to be disrupted. Following such
nonlinear detuning, resonant growth abruptly ceases (see Figure 4 at t=51).

3. TRANSIENT GROWTH OF PERTURBATIONS

Let us examine the role of transient growth during vortex turbulence interaction. We [3] have
analyzed the linear-regime behavior of arbitrary small-amplitude perturbations to the Oseen vortex.
The linear analysis established that (algebraically) growing perturbations exist and extracted those
perturbations (“optimal modes”) which maximize energy amplification, over a given time period of
amplification ¢. “Globally-optimal” perturbations are defined as the optimal perturbations that max-
imize the amplification (referred to as the gain, G(t) = E(t)/E(0), where E(t) is perturbation energy
at time t) over all ¢, for a given set of parameter values: m, k and Re; here Re is the vortex Reynolds
number, defined as circulation/viscosity.

Figure 6(a) plots the globally maximal gains G, (k) for axisymmetric (m = 0) and bending wave
(m = 1) modes. Gqs for m = 0 increases monotonically with decreasing k, attaining its largest value
in the k¥ — 0 limit. The largest-growing modes are, however, also those with the smallest growth rates,
with peak amplification attained at very large t. This is expected to limit the physical significance of
these modes. While for most k values, m = 0 modes have larger gains than m = 1 modes (Figure 6a),
the bending wave optimals possess two features that give these modes prime significance in vortex-
turbulence interaction: first, as seen above, m = 1 features large growth rates (compared to m = 0)
and large gains (compared to m > 1 modes); second, bending wave modes grow through resonance
with core waves, thereby exciting large fluctuations in the vortex core. This is seen in Figure 6(d),
where we plot the evolution of perturbation energy profiles. The core fluctuations attain levels far
exceeding the perturbation amplitudes outside the core (r > 1). In contrast, perturbation energy in
m = 0 modes remains localized near the radial location of the initial perturbation (Figure 6¢). Thus,
core transition (if it occurs) is likely to be the result of bending wave growth.

We evaluate the effects of nonlinearity by initializing the globally optimal perturbation at an ampli-
tude of 6.6%. The simulation (Figure 7) is performed at vortex Reynolds number Re = T'g/v = 5000.
Initially the vorticity perturbation is located only outside the core (Figure 7a, h), with wy being small
in comparison with w, and w,. The strain field of the vortex column’s swirl tilts w, into wy and
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Figure 6: Results from linear analysis: (a) Globally maximal gain Gmaz (k) for m=0 and m=1; (b) w, profiles
for global optimals at k = 1.5; (¢) Evolution of perturbation energy profiles F(r) for m =0 mode in (b); (d)
E(r) profiles for m=1 mode in (b). In all cases, Re = 5000.

(a) (b)

Figure 7: Contours of wy (a—g) and vorticity magnitude w (h—n) in a meridional z-z plane. Time shown are
(a,h) t =0, (b,4) t =10, (c,j) t = 20, (d, k) t = 30, (e,l) t =50, (f,m) t =75, (g,n) t = 100. Shaded regions
in (a-g) contain negative w,. Contours plotted with increment dw = 0.1 in (a—g) and dw = 0.2 in (h-n). In
(a—g) w =1 contour is also shown to indicate the vortex core.

stretches the vorticity. The consequent growth of wy is seen in figures 7(b—d). The external vorticity
is organized into a spiral vortex filament (“thread”). The optimal mode’s external wy is localized at
a radius where the thread’s induced velocity perturbation in the column’s core can resonate with a
bending wave eigenmode of the Oseen vortex. This leads to significant growth of core perturbation
vorticity, whose magnitude soon exceeds that of the thread (Figure 7d). Note that the bending wave is
associated with nearly equal magnitudes in all three vorticity components. In the meridional z-z plane
of Figure 7, the growth of w, (not shown) — which coincides with w, — causes appreciable deflection
of the vortex column’s axis; the deformation of the initially rectilinear column into a helical bending
wave can be discerned in figures 7(d, k).

The preceding mechanisms are essentially linear, but nonlinear effects strengthen progressively and
are clear at larger times, ¢ > 30. The most significant nonlinear effect is the roll-up of the external
vorticity patches into vortex-like filaments. The self-induced motion of each segment of the spiral
vortex filament advects the segment axially (along z). Further, the weaker wy cell located initially
at smaller r is wrapped around the stronger wy cell (Figure 7d). The net effect of the self-induced
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motions of the threads (negligible in the linear limit) is that opposite-signed cells are organized into
dipole-like structures. Mutual induction carries the dipole radially outwards (compare figures 7(c) and
figures 7(g). The cumulative effect of transient growth is that flow appears to be nearly turbulent at
late times. The development of a turbulence-like flow in a perturbed, stable vortex is remarkable. While
no core transition is observed in the present case, vorticity isosurfaces (not shown) display significant
distortion — with large-amplitude “twist” waves — of the initially cylindrical column. With increasing
Re, core break-up into finer-scale filaments may very well occur since the transient amplifications
increase with increasing Re. In practical flows, where Re are about four orders of magnitude higher
than in our simulation, core transition through transient excitation of bending waves appears to be a
distinct possibility.

4. CONCLUDING REMARKS

To explain the enigmatic growth of core fluctuations in a “stable”, rotating flow, we have analyzed
two alternative mechanisms. The first — thread-vortex CD resonance — has been previously proposed
in [2]. It has been found that there exist numerous “crossing points” where resonance is indeed possible
between relatively weak rings and vortex CD waves traveling with the same celerity. The resonance
can result in perturbation amplification by several orders-of-magnitude. No core transition has been
seen however; this is perhaps due to the nonlinear detuning of the resonance as vortex CD waves lose
speed with increasing amplitude as a result of nonlinear self-interaction. Further, analysis of turbulence
statistics shows that the dominant modes in the vortex core are not axisymmetric, but bending, waves.

The second mechanism is the amplification of bending waves through resonant interaction with
external turbulence filaments located at a critical radius outside the core. Such filaments are advected
around the core with the same azimuthal velocity as the core bending wave, leading to a different kind
of resonance and sustained amplification of the core wave [3]. Purusing mode evolution herein via DNS
into the nonlinear regime, we find that perturbation growth results in significant core distortion and the
appearance of turbulence-like finer-scale structures in the core periphery. The growth of even a single
transient bending wave captures various aspects of turbulence statistics. Interestingly, a dominant
bending wave mode appears to be adequate for accelerated vortex decay.

Nonlinear transient growth analysis appears to be the most tractable framework for understanding
the evolution of turbulent vortices. Consistent with prior observations from experiments and simula-
tions, the analysis predicts bending waves to be dominant perturbations in the core. Linear analysis
in [3] shows that mode amplifications of several orders-of-magnitude is possible even at moderate Re.
Detailed study of transient mode evolution is likely to suggest feasible means for vortex control in
practical flows. These results suggest several avenues for further research, including the possibility of
turbulence regeneration and self-sustenance, similar to that seen in wall-bounded shear flow, and the
impact on long-term vortex decay; model-based prediction of vortex decay rates; and the relationship
between transient growth and the growth of vortex modes when the external turbulence is forced.
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