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ABSTRACT: The dynamics of sheared granular fluid is briefly reviewed, focusing on instabilities, patterns and
bifurcations in plane shear flow. It is shown that a universal criterion holds for the onset of the shear-banding
instability (for perturbations having no variation along the stream-wise direction), that lead to shear-band formation
along the gradient direction. The same shear-banding criterion appears to hold in other complex fluids as well as
in the singular limit of atomistic fluids (i.e. elastic hard-spheres). A weakly nonlinear analysis of the shear-banding
instability unveils that the lower branch of the neutral stability curve, that corresponds to dilute flows, is sub-critically
unstable. In the presence of gravity, the origin of such shear-banding transition is shown to be tied to the spontaneous
symmetry-breaking shear-banding instabilities of the gravity-free uniform shear flow, resulting in universal unfolding
of pitchfork bifurcations in gravity-modulated plane shear flow.

1 INTRODUCTION
The collective motion of a large number of macroscopic solid particles is called “granular” flow, and an example

of such flow is the gravity-driven motion of particles down an inclined plane. In typical “dry” granular flows, the
effect of interstitial fluid is neglected and the interactions between grains are dissipative, which, in turn, leads to a
wealth of interesting behaviour[1−5]. The granular fluid differs from its atomistic/molecular counterpart in that the
collisions between macroscopic particles are inherently inelastic. This implies that if there is no external supply of
energy into the system, the fluctuation kinetic energy (i.e. granular temperature) would eventually decay. Thus, to
maintain a granular flow in its fluidized state, energy must be supplied to the system, for example, by shearing or
shaking. Unlike Brownian particles, the potential energy of a grain is much larger than its thermal energy, and hence
the granular matter is a prime example of an “athermal” system. The behaviour of granular materials is of immense
importance in many industrial and geological processes; most agricultural and pharmaceutical products are in granular
form. Granular materials are encountered in everyday life: sand, gravel, sugar, salt, cereals and powders. Despite their
practical importance and non-trivial dynamics, the current understanding of granular flows still remains at its infancy.

Instability-induced patterns have been extensively studied in classical fluid mechanics over more than a century.
Pattern formation in rapid granular flows (plane Couette flow, Poiseuille flow, vibrated bed, etc.) has received consider-
able attention during the last few years. Recent observations of cluster-formation, density waves and stress-fluctuations
in particle dynamics simulations of granular flows have motivated analyses of their stability. For experiments down
an inclined plane, many interesting patterns in the form of roll waves, fingering instability and longitudinal vortices
have recently been reported[2]. From the theoretical viewpoint, an immediate important question is whether one could
explain such pattern-formations from a minimal set of continuum equations. In the rapid-shear regime[1], an analogy
between the collisional granular fluid with a dense molecular gas has led to the development of the kinetic-theory-based
constitutive models[3]. These hydrodynamic models, typically truncated at the Navier-Stokes’ (NS) order, have been
widely used to gain insight into the macroscopic behaviour of various physical phenomena involved in dry granular
flows.

The plane Couette flow is a prototype model problem to study the rheology[1,3] and dynamics[1,2,6−11] of granular
materials. In the rapid shear regime, the linear stability analyses showed that the plane Couette flow admits different
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types of stationary and traveling wave instabilities, leading to different types of patterns[6,7]. Among all instabilities,
one interesting instability is the ‘shear-banding’ instability for which the homogeneous shear flow breaks into alter-
nating dense and dilute regions of low and high shear rates, respectively, along the gradient direction. This is dubbed
shear-banding instability since the “nonlinear” saturation of this instability is reminiscent of shear-banding solutions
in typical shear-cell experiments[4]: when a dense granular material is sheared the shearing is confined within a few
particle-layers (i.e., a shear-band) and the rest of the material remains unsheared, leading to the two-phase flows of
dense and dilute regions.

After presenting some simulation results in Sec. 2, I review previous linear and nonlinear stability results[6−11]

of plane Couette flow in Secs. 3 and 4. In particular, I will discuss the origin of the shear-banding instability and its
universality from the viewpoint of hydrodynamic stability.

2 PATTERNS IN PLANE COUETTE FLOW: SIMULATION
Consider a mono-disperse system of smooth inelastic hard-disks (of diameter d and material density ρp) in a

square-box of size H̃ under uniform shear flow. The system is periodic in x̃-direction (i.e. a particle crossing the
left/right boundary re-enters the system through the opposite boundary at the same vertical position with unchanged
velocities), and the standard Lees-Edwards boundary condition is used in the ỹ-direction to impose a shear-field across
ỹ-direction. This mimics a shear flow which is driven by two oppositely moving plates. In a typical simulation, the
disks are initially placed randomly in the computational box, and the initial velocity field is composed of the uniform
shear and a small Gaussian random part. An event-driven algorithm is then used to update the system in time. When
two particles collide, they lose energy due to the inelastic nature of collisions which is characterized by the coefficient
of restitution (0 ≤ e ≤ 1). For non-dimensionalization, we use H̃ , γ̃−1 and γ̃H̃ as the reference scales for length,
time and velocity, respectively, with γ̃ being the imposed shear rate. Thus the computational box spans the range of
[−0.5, 0.5] in both the stream-wise and transverse directions; the top image-box moves with a velocity 0.5 and the
bottom with −0.5. Depending on control parameters, different types of patterns emerge in plane shear flow, and below
I discuss two snapshots of shear-banding pattern.

Figure 1(a) shows an interesting pattern, with the particles forming a dense plug around the center-line. This
corresponds to a very dilute system, with the mean volume fraction of particles being φ = 0.05. For this case, the total
number of particles isN = 15000 and the restitution coefficient is e = 0.9. Staring from an unsheared initial condition
of random particle-configurations, this snapshot represent a steady state of the system. The corresponding coarse-
grained density profile is shown in Fig. 1(b)– thus, a homogeneous system splits into two parts, a dense, cold crystalline
area and a dilute, hot, fluid area. The shear-rate is not uniform along the gradient direction y: low/high shear-rate in
the dense/dilute part, respectively, leading to shear-localization or shear-band formation along the gradient direction.
This is reminiscent of shear-band formation in many other complex fluids[12].

A similar shear-banded solution[8] is shown in Fig. 2 for a moderately dense system φ = 0.3. From an unsheared
initial condition of random particle-configurations, this system has evolved in time to form two plugs near the walls,
with a very dilute region of particles in the bulk of the shear-cell. With the same parameter combinations, we have
checked that this system also evolves to yield a single central-plug, located symmetrically around the x-axis. Both of
these solutions satisfy the underlying symmetries of the shear flow and hence are permissible.

In Section 4, I will comment on the predicted density profiles under similar conditions that arise out of bifurcations
from the “homogeneous” shear flow. The related hydrodynamic model is described next.
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Figure 1: (a) Spontaneous shear-banding in a low-density sheared granular fluid: φ = 0.05, N = 15000 and e = 0.9;
(b) coarse-grained density profile.

3 HYDRODYNAMIC MODEL AND STABILITY
Restricting to the Navier-Stokes-level description of a granular fluid, we write down the balance equations for

mass, momentum and granular energy[3]:
(

∂

∂t
+ u · ∇

)

% = −%∇ · u (1)

%

(

∂

∂t
+ u · ∇

)

u = %g −∇ · P (2)

dim

2
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(

∂

∂t
+ u · ∇

)

T = −∇ · q−P : ∇u −D. (3)

Here % = mn = ρpφ is the mass-density, m the particle mass, n the number density, ρp the material density and φ
the volume fraction of particles; u is the coarse-grained velocity-field and T is the granular temperature of the fluid;
g is the gravitational acceleration and dim is the dimensionality of the problem (= 2/3 in two/three dimensions,
respectively). Note that the granular temperature, T = 〈C2/3〉, is defined[3] as the mean-square fluctuation velocity,
with C = (c− u) being the peculiar velocity of particles and c the instantaneous particle velocity. The flux terms are
the stress tensor, P, and the granular heat flux, q; D is the rate of dissipation of granular energy per unit volume. The
constitutive relations for these flux terms needed which are detailed below.

3.1 Constitutive Relations
The standard Newtonian form of the stress tensor and the Fourier law of heat flux are:

P = (p− ζ∇ · u)I − 2µS and q = −κ∇T (4)

where I is the identity tensor and S is the deviator of the deformation rate tensor. Here p, µ, ζ and κ are pressure, shear
viscosity, bulk viscosity and thermal conductivity of the granular fluid, respectively.
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Figure 2: Same as Fig. 1(a) for a moderate density φ = 0.3, with e = 0.8 and N = 15000. (Adapted from JFM, vol.
523, p. 277)

Focusing on the nearly elastic limit (e ∼ 1) of an inelastic hard-sphere fluid, the constitutive expressions for p, µ,
ζ, κ and D are given by[3]

p(φ, T ) = ρpf1(φ)T, µ(φ, T ) = ρpdf2(φ)
√
T

ζ(φ, T ) = ρpdf3(φ)
√
T , κ(φ, T ) = ρpdf4(φ)

√
T

D(φ, T ) =
ρp

d f5(φ, e)T
3/2

(5)

where f1–f5 are dimensionless functions of the particle volume fraction. It may be noted that the dissipation of energy,
D, is identically zero for elastic (e = 1) hard-spheres.

3.2 Plane Couette Flow: Base Flow
We will study the stability of the plane Couette flow of a granular fluid bounded by two oppositely-moving walls

as discussed in Sec. 2. For the steady (∂/∂t = 0), fully developed (∂/∂y = 0) shear flow, the continuity equation is
identically satisfied, and the momentum and energy balances take the following forms

d
dy

(

µ du
dy

)

= 0, dp
dy + φH3

Fr2 = 0,

H−2 d
dy

(

κ dT
dy

)

+ µ
(

du
dy

)2

−D = 0.







(6)

There are four control parameters: the coefficient of restitution e, the mean density φav = φ, the Couette gap (i.e.
non-dimensional wall separation) H = H̃/d, and the Froude number Fr = Ũ/

√
gd. The gravity-free case can be

obtained by considering the infinite shear-rate limit, i.e. Fr = ∞.
For the simplest case with no-slip and zero energy-flux boundary conditions, it can be verified that the gravity-free

case admits a uniform shear solution with constant solid fraction and granular energy:

φ(y) = const. , u(y) = y, T (y) = f2(φ)/f5(φ, e). (7)
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Before proceeding further, we note that the equations (6) with Fr = ∞ admit the following symmetry:

φ(y) = φ(−y), u(y) = −u(−y), T (y) = T (−y). (8)

The effects of boundary conditions on instabilities and related bifurcated solutions have been discussed elsewhere [7].

3.3 Stability Analysis
To study linear stability of the steady, fully developed plane Couette flow [Eqn. (7)], the base flow is perturbed

by infinitesimal disturbances, and their time evolution is studied by linearizing the governing equations about the
base state. Since the linearized disturbance equations and boundary conditions do not depend on t explicitly, the
normal-mode ansatz can be used (we restrict to two-dimensions):

[φ′, u′, v′, T ′] (x, y, t) = [φ̂(y), û(y), v̂(y), T̂ (y)] eikxx+ωt, (9)

where quantities with hats are complex amplitude functions of y, kx is the stream-wise wavenumber and ω the dis-
turbance frequency. For temporal stability, kx is assumed to be real and ω is complex. The rate of growth or decay
of disturbances is determined by ωr, the real part of ω, and the imaginary part is the frequency. The flow is stable,
neutrally stable, or unstable accordingly as ωr is negative, equal to zero, or positive, respectively.

Using (9) we obtain a set of linear ordinary differential equations for the disturbance amplitudes X̂ = (φ̂, û, v̂, T̂ ):

L(.)X̂ = ωX̂, with B±(.)X̂ = 0 at y = ±1/2, (10)

which constitutes an eigenvalue problem with ω as its eigenvalue. The explicit forms of L(.) and the boundary
operators B±(.) can be found elsewhere[7,8]. A staggered grid spectral collocation scheme[7] is used to discretize the
stability equations (10) in the gradient direction. The discretized stability equations along with the boundary conditions
are formulated as a matrix eigenvalue problem: AΦ = ωBΦ, where ω is the eigenvalue and Φ is the discrete analogue
of the eigenfunction.

4 DISCUSSION: SHEAR-BAND INSTABILITY AND UNIVERSALITY
Previous works[5−11] have unveiled that the uniform granular shear flow is unstable to various kinds of distur-

bances, leading to both stationary and traveling wave patterns. Here we consider only a special kind of stationary
instability that arises due to purely stream-wise disturbances (kx = 0), i.e. the disturbance patterns do not vary with
x; we call it shear-banding instability since its nonlinear saturation leads to shear-banding-type patterns of alternating
bands of dilute and dense regions in the gradient direction. For such disturbances, there is a minimum value of solid
fraction (φ ∼ φc) above which the flow is unstable if the Couette gap satisfies the following relation[7]:

H ≥ nπψ(φ, e), (11)

where ψ(φ, e) is a complicated function of density and restitution coefficient, and n = 1, 2, . . . is the mode number
(which is related to the eigenfunctions of the linearized stability problem). It is clear that the n = 1 mode is the first to
become unstable at a critical value of the Couette gapH = Hc ≡ πψ(φ, e) (for given φ and e). Beyond this minimum
Couette gap H > Hc, the successive higher-order modes (n = 2, 3, . . .) take over as the most unstable mode at
H = nHc. TreatingH as a bifurcation parameter, there is a countably infinite number of pitchfork bifurcations (since
the least-stable eigenvalue is real), located at H = nHc

[7,8]. From a numerical bifurcation analysis[8], we obtained
nonlinear density profiles that show segregation of particles along the gradient direction, similar to those displayed in
Figs. 1 and 2.

A weakly nonlinear analysis[11] of the shear-banding instability shows that the lower branch of the neutral stability
curve, that corresponds to dilute flows, is sub-critically unstable. This explains the viability of the shear-banding state
in dilute flows (such as in Fig. 1) for which the linear stability theory predicts stability of the homogeneous state.

In the presence of gravity[8], the origin of such shear-banding transition has been shown to be tied to the sponta-
neous symmetry-breaking shear-banding instabilities of the gravity-free uniform shear flow. The gravity plays the role
of an imperfection and all possible forms of imperfect bifurcation scenarios can be realized in the present bifurcation
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problem. Thus, the effect of gravity on the granular Couette flow truely belongs to the class of the universal unfolding
of pitchfork bifurcations[8].

Using linear stability theory and a numerical bifurcation analysis, our recent work[9,10] has uncovered that the
sheared granular flow evolves toward a state of lower dynamic friction. Beyond a critical density, the homogeneous
state corresponds to a relatively higher dynamic friction, and hence the shear flow jumps into a state of lower dynamic
friction that corresponds to a shear-banding state of segregated density profile along the gradient direction[9]. Interest-
ingly, this finding also helps to explain many previous particle dynamics simulation results on the decrease of dynamic
friction at very high densities[3].

Recently, I uncovered an interesting analogy[10] of the present shear-banding criterion with the shear-banding
phenomenon in a variety of other complex fluids (e.g., worm-like micelles, colloidal suspensions, polymeric melt,
biphasic liquid system, etc.) under shear[12]. Such shear-induced banding in complex fluids has been tied to a decrease
in viscosity, or, equivalently, a lower viscous dissipation[12]. This is similar to our universal criterion of a lower
“dynamic” friction for the shear-banding state in a sheared granular fluid[9,10].

ACKNOWLEDGMENTS
I acknowledge partial support from two grants: MPI/MA/4190 (Max-Plank Partner Group at JNCASR Banga-

lore, funded by Max Planck Society, Germany) and DRDO/RN/4124 (funded by Defence Research and Development
Organization, India).

REFERENCES
[1] Goldhirsch I (2003) Annu. Rev. Fluid Mech. 35, 267; Campbell CS (1990) Annu. Rev. Fluid Mech. 22, 57; Savage
SB (1984) Adv. Appl. Mech. 24, 289.
[2] Aranson IS and Tsimring LS (2006) Rev. Mod. Phys. 78, 641; Kadanoff LP (1999) Rev. Mod. Phys. 71, 435;
Jaeger HM, Nagel SR and Behringer RP (1996) Rev. Mod. Phys. 68, 1259.
[3] Savage SB and Jeffrey DJ (1981), J. Fluid Mech. 110, 255; Lun CKK etal. (1984) J. Fluid Mech. 140, 223; Sela N
and Goldhirsch I (1998), J. Fluid Mech. 361, 41; Alam M etal. (2002) Phys. Fluids 14, 4085; Alam M and Luding S
(2003) J. Fluid Mech. 476, 69; Alam M and Luding S (2005) Phys. Fluids 17, 063303.
[4] Savage SB and Sayed S (1984), J. Fluid Mech. 142, 391; Tsai JC, Voth GA and Gollub JP (2003) Phys. Rev. Lett.
91, 064301; Alam M and Luding S (2003) Phys. Fluids 15, 2298.
[5] Gayen B and Alam M (2008) Phys. Rev. Lett. 100, 068002.
[6] Gayen B and Alam M (2006) J. Fluid Mech. 567, 195; Alam M and Nott PR (1997) J. Fluid Mech. 343, 267.
[7] Alam M and Nott PR (1998) J. Fluid Mech. 377, 99; Nott et al. (1999) J. Fluid Mech. 397, 203.
[8] Alam M etal. (2005) J. Fluid Mech. 523, 277; Alam M (2005) In Trends in Applications of Mathematics to
Mechanics (Ed. Y. Wang and K. Hutter), p. 11-20. Shaker-Verlag, Aachen.
[9] Alam M (2006) J. Fluid Mech. 553, 1; Alam M (2008) Preprint.
[10] Alam M, Shukla P and Luding S (2008) Preprint (under review).
[11] Shukla P and Alam M (2008) Preprint (under review).
[12] Hoffman RL (1972) Trans. Soc. Rheol. 16, 155; Erpenbeck J (1984) Phys. Rev. Lett. 52, 1333; Spenley NA,
Cates M and McLeish TB (1993) Phys. Rev. Lett. 71, 939; Caserta S etal. (2008) Phys. Rev. Lett. 100, 137801;
Olmsted PD (2008) Rheol. Acta 47, 283.

6


