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1. Introduction 

 
Kinetic flux based vector splitting (KFVS) method is 
based on the Boltzmann equation of kinetic theory of 
gases and is also called Boltzmann method. It uses the 
well known fact that suitable moments (called Ψ-
moments to be explained later in this paper) of the 
Boltzmann equation are the Euler equations of gas 
dynamics when the velocity distribution function is a 
Maxwellian. The Euler equations are nonlinear vector 
conservation laws while the Boltzmann equation is for 
a scalar f called velocity distribution function and 
hence it is hoped that constructing a numerical method 
for Euler equations is easier by taking Ψ-moments of a 
numerical method for the Boltzmann equation.    
 

2. Boltzmann Equation and Notation 
 
The 1D Boltzmann equation without collision term is 
given by 
 

                 (1)              
 
where the Maxwellian is defined by 
 

          (2)              
 
Here v is a particle or molecular velocity, I is the 
internal energy variable,  is internal energy due to 
non translational degree of freedom and is given by 
 

                 (3)              

 
The internal energy Io is required to get the right 
amount of internal energy which for a given γ (Cp/Cv) 
is  

 
                 (4)              

 
 
Further, u is fluid velocity,   , R = Gas constant 
and T the absolute temperature. 
Define the moment function vector 

 
 
 
which corresponds to mass, momentum and energy 
components. The Ψ-moments of the Boltzmann 
equation reduce to 1D Euler equations. 
 

                   (5)              
 

                      (6) 

                 (7) 

 
And e = total energy per unit volume  
           =               (8) 

 
We have used the term molecule in a rather loose 
sense. Particles here loosely called molecules are in 
fact 1-D mass points with velocity (v, I) ~ F(v, I) i.e. v,I 
obey Maxwellian distribution. 
 

3. Basic Theory of KFVS 
 
We start with 1-D Boltzmann equation without 
collision term, i.e. 

 
     
                               
and following Courant, split the velocity as  
 

 
 
which gives split Boltzmann equation as  
 

 
 
Taking Ψ-moments of (10) we obtain KFVS split Euler 
equation
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The split fluxes are given by 
 

 
 
Performing integration we obtain (see Deshpande 
1986, Mandal and Deshpande 1994) 
 

 
 

 
 

 
Defining the thermal flux vector 
 

 
 
The split flux can be written as  
 

 
 
Using backward and forward differencing (BD/FD) for 
spatial derivatives in (11) we can easily write the semi-
discrete conservation law as 
 

 
 

 
                    Fig 1 1-D cells of size ∆x 
                
Fig1 shows cells or finite volumes obtained from a 
uniform mesh for which the fluxes on the cell faces 

are given by 
 

 
 
We have used the well known upwind principle in 

constructing the numerical flux functions  . Using 

first order time marching in (17) we get the 1-D FVM-
KFVS based state update formula  
 

 
 
We note that the above numerical scheme is first order 
accurate in space and time and for getting acceptable 
accuracy it is necessary to reduce numerical dissipation 
or diffusion inherently present in the above KFVS 
upwind method. It is very easy to develop a second 
order accurate KFVS state update by using second 
order finite differencing or by using linear variation 
within a cell in case of Finite Volume Method(FVM). 
We have followed this standard approach in writhing 
2D and 3D FVM-KFVS codes (see Mathur 1992). 
 
We will consider yet another modification called 
modified KFVS (MKFVS) method for reducing 
numerical dissipation. 
 

4. Modified KFVS method 
 
To develop MKFVS method we start with velocity split 
Boltzmann equation 
 

 
 
We now do mpde(modified pde) analysis for the 
upwind finite differenced equation 
 

 
 
This mpde analysis yields the mpde: 
 

 
 
The mpde (22) clearly shows that the numerical 
scheme is first order accurate in space and has 
numerical kinematic viscosity  

 
 
which is quite large due to velocity scale |v|. It is 
possible to modify the numerical scheme (21) by 
introducing a dissipation control junction Φ [See Anil 
(2008)]. We then obtain modified KFVS as  
 

 
 
Again using backward and forward differencing of 
spatial derivatives in (24) and thereafter doing mpde 
analysis yields the mpde 
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The choice Φ=1 gives the usual KFVS scheme with 
first order spatial accuracy while Φ =0 gived 2nd order 
spatial accuracy. Thus a suitable choice for Φ enables 
us to control numerical kinematic viscosity 
 

 
 
Taking Ψ moment of (25) and considering the mass 
component we obtain mpde at the Euler level as  
 

 
 
Where 

 
 
which clearly shows that we can reduce numerical 
viscosity by suitable choosing Φ(v) . The choice [See 
Anil (2008)] 
 

 
 
with α as dissipation control parameter has been found 
to be very good in that it can reduce the numerical 
dissipation as low as we please. It is interesting to note 
that α =0 leads to KFVS while α =∞ leads to a central 
differencing method. A certain amount of upwind bias 
is required for ensuring stability of MFKVS method. 
Defining non-dimensional by 

 
 
leads to 

 
 
The modified KFVS fluxes are then given by 

 
 
Performing integration w.r.t v and I we obtain 
 

 
 
Where  are usual KFVS fluxes evaluated for fluid 

variables ρ, and p. It is very easy to modify 

computer program based on KFVS fluxes to one 
involving the modified split fluxes . 
 
The mpde for 1D Euler equations discretised using 
MKFVS is given by 
 

 
 
The dissipation matrix in (34) is easily seen to be 

 

 
where  , are Jacobians matrices 
corresponding to flux vectors  and . The 
maximum numerical kinematic viscosity in the above 
mpde is  

 
 
Where  are eigenvalues of matrix D. Fig. 2 shows 
plot of max| | against  and it is obvious that 
 

  
 
thus demonstrating low dissipative nature of a 
numerical method based on MKFVS. 

 
Fig 2: max  variation with Mach No. 

 
Anil [ 2008 ] has developed 2D and 3D FVM-MKFV 
computer program for obtaining numerical solution of 
inviscid compressible flows. For further reducing the 
numerical dissipation in the scheme Anil, Rajan, 
Omesh and Deshpande [2008] have solved optimal 
control problem. The values of  at grid points 
constitute a vector and the optimal problem is to 
minimize cost function subject to the pde 
 

 
 
as the constraint. These are 2D Euler equations of gas 
dynamics. Here U is the solution vector i.e. values of 
conserved vector U at all cell centers while  is the 
control vector. One choice for the cost function is  

 
 

 
 
where N is the total number of cell centers, i is the cell 
number and ,   are values of pressure and density 
in the free stream. It may be noted that  
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where  = total entropy produced in the domain 

 = entropy produced due to physical 
processes such as shocks 

 = entropy produced due to numerical 
dissipation 
We note that  cannot be reduced by 
optimization routine below  because governing 
equations are a constraint on optimization. The 
sensitivity gradients are obtained using discrete adjoint 
approach and automatic differentiation tool 
TAPENADE has been used to compute sensitivity 
gradients and values of  are updated using steepest 
descent method. We have used the simplest optimizer 
to test the idea. The m-KFVS adjoint solver (MKFVS-
AD) has been applied to (i) low Mach number flow  
past NACA0012 airfoil, (ii) transonic flow past Onera 
M6 wing. We will consider only one example of 
computing supersonic flow at M = 1.2, A.O.A = 0 deg, 
past NACA 0012 airfoil. The Fig 3 shows pressure 
contours obtained using first order KFVS method, m-
KFVS, m-KFVS-AD and q-KFVS (2nd order accurate 
KFVS method based on entropy variables) method.  
 

 
 

Fig 3: pressure contours for NACA 0012 
 
 It is clear that first order KFVS method is very 
dissipative and m-KFVS-AD method has less spurious 
wiggles in pressure contours compared to second order 
accurate q-KFVS method. Table 1 shows values of CL 
and CD obtained using using first order KFVS, m-
KFVS-AD and q-KFVS methods. Exact value of CL is 
zero in the present case and the m-KFVS-AD method 
gives least value of CL(0.000040) as against 0.000063 
for second order accurate q-KFVS method.   
 
 
 
 
Table 1 comparison of Lift and Drag coefficient 
 

Scheme  
1st order KFVS 0.000168 0.1023 
m-KFVS-AD 0.000040 0.0958 

q-KFVS 0.000063 0.0968 
AGARD 0.0 0.0946 to 0.0960 

 
We will now study KFVS on moving grid (KFMG) 
which is very useful in dealing with problems 
involving moving bodies. 
 

5. KFVS on moving grid (KFVS) 
 
Consider a cell with boundaries a (t), b (t) which move 
with time as shown in fig (4) 
 
      
           
           
 
 
 
 a(t)      b(t) 
 
                 Fig 4   Moving cell 
 
 The velocities of boundaries are  
 

                               (41)             
      
   
The 1D Boltzmann equations without collision term is  
 

               (42) 
    
 
Integral form of (42) is  
 

                         (43) 
 
        
From elementary calculus we have  
 

  
 
 
This gives the basic relation 
 

           (44) 
 
   
This relation is useful in deriving KFMG.  
 
Combining (43) with (44) we get 
 

            (45) 
 
Let  velocity of a particle relative to a point 
moving with velocity . We pass on to Euler 

Cell 
a≤x≤b 
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equation by taking  moment i.e. 
 

            (46) 
    
 
The flux  on a moving surface is therefore given by  
      

              (47) 

   

 
            (48) 

 
The flux vector  on a moving surface can now be 
split along lines similar to principle used in obtaining 
KFVS. Using  for splitting we get 
 

              (49) 

 
Where  The split fluxes  on a moving surface 
are related to the usual KFVS fluxes  except that 
these are now evaluated at  instead of S. The 
components of the column vector on RHS of (49) are 
given by  
 

   

   

      (50) 
 
Where       
 
It can be easily verified that  
 

           (51) 
    
Taking 1D moving mesh as shown in fig (5) 
 

 
                 Fig 5   Cell j with moving boundaries 
 
the semi discrete law for cell j corresponding to 
equation (46) is given by 
 

                   (52) 

 
 
Here  is the cell- average defined by 

 

 
 
and it should not be confused with bar notation used in 
equations (47), (49)  and (50). The numerical flux 
functions on moving boundaries are easily constructed 
from upwind principle as  
 

 
         (53)  

 
The update formula (52) reduces to Eulerian update 
formula for w = 0 and to Lagrangian update formula 
when w = u. For other values of w it is neither. 
Krishnamurthy (2002) and Krishnamurthy , Sarma & 
Deshpande (2004) have applied the KFMG method for 
computing unsteady transonic flow around NACA 
0012 Oscillating airfoil. The parameters of calculation 
are: 
 
(a) Angle of attack variation 

 
(b) Free stream Mach no.  
(c) Mean angle of attack  , amplitude 

 
(d) Reduced frequency k = ωc / 2 U∞  = 0.0814, c 
=chord 
(e) Airfoil oscillations are around quarter chord point 
(f) Spring analogy method has been used to do 
regridding everytime body deforms. Translation and 
rotation of entire grid are used for rigid body motion.  
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Fig 6: lift coefficient vs pitch angle 
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Fig 7: Moment coefficient vs pitch angle 

 
Fig 6 shows variation of lift coefficient with pitch 
angle obtained by three numerical methods namely 
KFMG, Batina (based on Van Leer’s flux vector 
splitting method) and Ambrosi (based on Roe’s 
method).  
 
Fig 7 shows Cm versus pitch angle. The solid dots are 
experimental points and results of other numerical 
methods are above shown. Large variation among 
values of Cm predicted by various numerical methods is 
very often noticed and reasons for this variation are not 
very clear. 
 

6. Concluding Remarks 
 
KFVS method and KFMG have been used 
exhaustively by Deshpande and scientists at NAL, 
Bangalore and DRDL, Hyderabad both in combination 
with Finite Volume and Least square kinetic upwind 
Meshfree (LSKUM) method. These codes have been 
used to compute flow past various oscillating and 
stationary bodies of interest in aerodynamic design of 
aerospace vehicles. Only a few results are presented in 
this paper. It is a great pleasure to dedicate this paper to 
my teacher and guide Prof. Satish Dhawan to whom I 
owe much. 
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