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Abstract

The complexity of various Newtonian fluid flows encountered

in nature and technology come from the coexistence of

three nonlinear fundamental processes (or modes) and their

couplings, both in the interior of the fluid and on boundaries:

shearing process (vortex mode), compressing process (sound

mode), and irreversible thermodynamic process (entropy

mode). These processes are characterized by their respective

localized but strong structures and interactions which can

dominate the global flow performances. The more complex

could such a flow be, the more desirable it is to decompose the

flow into its most elementary building blocks, such that the key

flow structures and interactions can be examined separately

and understood clearly. A general theoretical framework for

multiple-process splitting and coupling is being developed to

this end. It permits identifying proper indicators for those key

flow structures and interactions, and revealing how they act

in global flow performances. Therefore, the theory provides a

rational and powerful tool for engineering flow diagnosis and

optimal configuration design/flow control. In this article we

review this theory with emphasis on its physical background

and demonstrate its applications to several practical complex

flow diagnoses and management.

Keywords Multi-process decomposition and coupling,

local dynamics theory, boundary vorticity flux, engineering

flow diagnosis and management.

1 Introduction

The motion patterns of fluids of small viscosity, such as air
and water in nature and technology, are amazingly rich
and extremely complicated owing to big variety of flow
structures. After Leonardo da Vinci’s keen observation
of vortical structures, Helmholtz [1] and Kelvin [2] laid
down the theoretical basis for vortex motion. In the same
seminal paper Helmholtz [1] also introduced the famous
intrinsic decomposition of a vector field into a longitudinal
(potential) part ∇ϕ and a transverse (rotational) part
∇× ψ, say, which foresaw two fundamental processes in
a fluid motion: compressing and shearing, respectively

(e.g. [3], [4]). References [5] and [6] then added the
coupling of these fluid-dynamic processes with irreversible
thermodynamic process measured by entropy increment.
Since then it has been a consensus that the complexity
of fluid motion, in particular with small viscosity µ
or at large Reynolds numbers Re, has its origin at
the coexistence and coupling of these three “modes” or
processes, as exhibited by the characteristic structures
and waves of each process, their nonlinear evolutions,
instabilities, and interactions. These structures are highly
localized and occupy only a very small portion of the
flow domain, but may serve as organizers of the entire
flow. They are measured by the variation of primitive
flow variables (u , p) – velocity and pressure – rather than
these variables themselves.

Owing to this conceptual development, in the study
of complex flows it would be very beneficial to shift
one’s attention from global and smooth flow regions to
those key localized structures, and from the original
Navier-Stokes (NS) equations as a whole to their
intrinsically split constituents for each fundamental
process and its coupling with the others. These topics fall
into a general theory of multiple-process decomposition
and coupling. It is not only of fundamental interest
but also of great engineering value. Every complex
engineering flow has a set of global performances as its
design objectives, e.g., the lift/drag ratio of a wing, the
moment of a rotor blade, and the efficiency of a turbine,
etc. These performances are determined by some key
flow structures and their stability. The task of complex
flow diagnosis is to pinpoint those key local structures
and identify their physical origin. The ultimate goal
of diagnosis is to improve the performance by effective
flow management, including optimal configuration design
and/or efficient flow control. In both diagnosis and
management the theory of process decomposition and
coupling may serve as a powerful and quantitative tool.

Within this theoretical framework, the most matured
and widely applied branch is the vorticity and vortex
dynamics, which we define as the theory on the shearing
process measured by the vorticity and its coupling with



compressing and thermal processes [7]. Accordingly, the
present article about complex vortical flow diagnosis and
management is focused on a subfield of this branch. The
main issues to be dealt with in the article are:

— An outline of the basic ideas of process
decomposition and coupling both in the interior of a
vortical flow and on the flow boundary (§ 2);

— Identification of the most important local indicators
of vortical flow structures and interactions inside the
flow field, and those on-boundary physical roots of these
structures (§ 3). In flow diagnosis these indicators are the
local quantities one should survey with high priority;

— Construction of integral expressions for global flow
performances, in which the integrands are explicitly
those identified key indicators of local structures and
interactions (§ 4). While our presentation is focused on
the total force and moment, other performances can be
treated in a similar way;

— Examples of applying the theoretical results from
vorticity and vortex dynamics to complex flow diagnosis
and management (§ 5), followed by brief concluding
remarks (§ 6).

2 Fundamental Processes and Their
Coupling

The Helmholtz decomposition of a vector field mentioned
in § 1 is a rational tool to dynamically decompose the NS
equations into respective governing equations for shearing
and compressing processes and to identify their coupling
mechanisms. In this section we briefly outline the results
obtained so far.

Let a = Du/Dt be the fluid acceleration, ω = ∇× u
and ϑ = ∇·u the vorticity and dilatation, respectively, ρ
the density, µ the shear viscosity (assumed constant for
simplicity), µθ = ζ +4µ/3 the longitudinal viscosity (ζ is
the bulk viscosity), and Π = p − µθϑ the normal stress
consisting of the pressure p and a viscous-dilatation term.
Truesdell [8] points out that the body force (inertial force
−ρa plus external force ρf ) per unit volume has a natural
Helmholtz decomposition, since the NS equation can be
written as

ρ(−a + f ) = ∇Π+∇× (µω), (1)

of which the two terms on the right-hand side represent
the compressing and shearing processes, respectively.
Each of these processes plays dominant role in a flow
field through very different flow structures. The most
important compressing structure is shock wave associated
to large (negative) peak of ϑ. In contrast, the shearing

structures are characterized by large concentrated ω, such
as boundary layers, free shear layers and axial vortices.

Each of the fundamental processes evolves nonlinearly,
and meanwhile they interact with each other both inside
the flow field and on the boundary. The most active
nonlinearity and coupling are caused by the inherent
nonlinearity of the acceleration a , which itself should
be decomposed. We thus turn to the NS equation per
unit mass, considering the Crocco-Vazsonyi equation with
constant dynamic viscosities, in which the vorticity ω and
entropy gradient ∇s appear maximally:

u ,t + ω × u = −∇H + T∇s+ νθ∇ϑ− ν∇× ω, (2)

whereafter the suffix , t denotes partial derivative with
respect to time; H = h + |u |2/2 is the total enthalpy
with h being the enthalpy, T the temperature; and ν and
νθ are the kinematic counterpart of µ and µθ, which are
assumed nearly constant for neatness. We also dropped
the body force f . Then the curl and divergence of (2)
yield [7]

ω,t − ν∇2ω = −∇× (ω × u − T∇s), (3a)

ϑ,t − νθ∇2ϑ+∇2H = −∇ · (ω × u − T∇s). (3b)

It is well known that the vorticity transport equation (3a)
governs the shearing process. In contrast, the dilatation
transport equation (3b) alone is insufficient for describing
the compressing processes; it has to be combined with the
continuity equation, which makes the general formulation
for compressing more involved. For a new approach see [9]
and [10].

The only common quantity ω × u − T∇s in both (3a)
and (3b) represents a nonlinear and inviscid coupling
between the two processes inside the flow field, dominated
by the Lamb vector l ≡ ω × u . This vector is
more localized and contains more information than the
vorticity field because it reflects the interaction between
the vorticity and neighboring velocity field. While (3a)
indicates that∇×l affects the shearing process by causing
the advection, tilting, and stretching of vorticity lines,
(3b) suggests that ∇ · l is a source of sound [11]. This
brief observation already suffices to indicate that the
Lamb vector and its curl and divergence deserve a further
examination. This will be done in § 3.

In contrast to the decomposed but coupled equations
(3) for shearing and compressing processes, applying
(1) on a no-slip wall, we obtain a pair of viscous
and apparently linear normal-tangential (ω,Π) coupling
relations:

−1

ρ

∂Π

∂n
= n · (aB − f ) + ν(n ×∇) · ω, (4a)

ν
∂ω

∂n
= n ×

(
aB − f +

1

ρ
∇Π

)
+ ν(n ×∇)× ω.(4b)
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The coupling with entropy process can be made explicitly
by replacing ∇p/ρ in (4) by ∇h− T∇s.

The operator n × ∇ in (4) is of O(1). Thus, for
flows with Re ≫ 1, at the right-hand sides of both
(4a) and (4b) the viscous terms are small compared to
others. Namely, the normal gradient of Π is mainly
produced by the wall-normal acceleration and body force,
while the normal gradient of the vorticity is dominated
by the tangential components of the wall acceleration,
body force, and in particular the tangential gradient of
Π. This latter balance is of crucial importance in flow
diagnosis and management, because its left-hand side
defines the boundary vorticity flux (BVF) σ ≡ ν∂ω/∂n
that, as identified by Lighthill [12], is the rate at which
the vorticity is created at the wall by the no-slip condition
and sent into the flow by diffusion.

Take incompressible flow as example, (4b) reveals that
BVF has four origins:

σ = σa + σp + σf + σv (5a)

where

σa = n × aB , σp = 1
ρn ×∇p,

σf = −n × f , σv = ν(n ×∇)× ω. (5b)

Here, σv is usually small as just mentioned. σa is
important for flows with moving or deforming boundaries
such as animal locomotion. It is also important for
flow controls with flexible walls, such as turbulent drag
reduction by spanwise traveling tangential wave [13]
and bluff-body wake elimination by streamwise traveling
normal waves [14]. σf plays a similar role in flow
control as σa does, such as turbulent drag reduction
by traveling wave of the Lorentz force in electronically
conducting fluid [15],[16], as explained by [13]. While
these mechanisms may sometimes be absent, σp is always
there; for flow over a stationary wall without body force,
we simply have

σ ≃ σp ≡ 1

ρ
n ×∇p, (6)

which is of O(1) at any Re. This key BVF constituent
will be further examined in § 3.

3 Key Indicators for Vortical Structures
and Interactions

Having obtained the process decomposition and coupling
equations both in the interior of the flow and at boundary,
our next task is to identify the key local indicators
of vortical structures and interactions to be examined

with high priority in complex flow diagnosis. We have
seen in § 2 that the Lamb vector l ≡ ω × u and
the pressure-caused BVF σp stand at the crossroad of
shearing and compressing processes in the interior and
on the boundary of the flow, respectively. In addition
to process coupling, the Lamb vector is also the unique
mechanism in (3a) responsible for the self-nonlinearity in
vortex motion.1 Therefore, the various aspects of l and
σp relevant to local flow diagnosis and global (integrated)
flow performance are naturally our main concern, and will
be explored in this and the next sections, respectively.

If a fresh observer walks into an incompressible vortical
flow at a large Reynolds number, he or she would first see
the strongest vortical structures — axial vortices; only
after a more careful examination the observer would find
viscous free shear layers whose rolling up forms the axial
vortices, and then boundary layers that form the free
layers by separation. These sheet-like vortices are the
primitive but weaker vortical structures. Their origin
could then be traced to the vorticity creation at solid
boundaries. This order by which the observer would
learn vorticity and vortex dynamics will be followed in
our presentations in this and the next sections. It is
also a natural order for conducting complex flow diagnosis
and management to be exemplified in § 5: typically, one
first identifies the most favorable and unfavorable strong
structures inside the flow field, then traces their causes
to near-wall flow, and finally performs optimal design or
flow control by managing their on-wall root.

3.1 Lamb Vector as the Vortex Force

In the Crocco-Vazsonyi equation (2), the Lamb vector
of a fluid element represents a lateral acceleration
perpendicular to both directions of velocity and vorticity.
Thus u×ω is an inertial force acting on the fluid element
(i.e., a local rate of change of momentum per unit mass),
known as the vortex force. This idea was originated in [17]
and was extensively used in [18]-[20], among others. Its
characteristic structure immediately reminds us that the
vortex force must be the very origin and localized form of
the famous Kutta-Joukowski formula, and hence plays a
central role in vortical interactions. While this assertion
will be conformed in § 4 when we consider integrated
performances, here we explore the implication of the
Lamb vector as a local force.

For simplicity we work within the vortex-sheet
dynamics, which considers the asymptotic behavior of
shear layers of thickness δ → 0 as Re → ∞. Assume

1Strictly, the Lamb vector also contains coupling with the
compressing process, because the velocity u may come from both
processes.
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that at both sides of the vortex sheet the flows have
potential ϕ and come from the same upstream fluid. Then
the sheet moves at the averaged velocity u of both sides
of the sheet, and we can introduce a circulation along a
circuit across the sheet once, Γ(x , t) = −[[ϕ]] that satisfies
DΓ/Dt = 0,2 in agreement with the Kelvin circulation
theorem. Let [[f ]] = f1−f2 be the jump of any variable f
across the sheet and n be the normal pointing from side
2 to side 1, for the vortex sheet strength and its relation
with Γ we have

γ = lim
δ→0

∫ δ

0

ωdn = n × [[u ]] = −n ×∇Γ. (7)

The vortex-sheet Lamb vector is γ × u . A free
vortex sheet does not stand any pressure jump; but
the “bound vortex sheet” does, which represents a wing
of negligible thickness enveloped by boundary layers.
Correspondingly, the vortex force u × γ has a two-fold
implication: it is either a true lateral force if it is
associated with a bound vortex sheet, or an inertial
force if associated with a free vortex sheet. To illustrate
this, consider two-dimensional incompressible flow on
the (x, y)-plane and introduce an intrinsic curvilinear
orthonormal frame (t ,n) along the sheet, with t×n = ez,
u = (us, un), and γ = ezγ, so that

γ =
∂Γ

∂s
, Γ(s) =

∫ s

s0

γds = lim
δ→0

∫ δ

0

∫ s

s0

ωdsdn, (8)

where s0 is an end point of the vortex sheet. Then from
the Bernoulli equation we have the following dynamic
equation [7], which highlights the dual role of not only
the Lamb vector but also the time-variation of Γ:

ρ
DΓ

Dt
= ρ(Γ,t + γus) =

{
[[p]] for bound sheet,
0 for free sheet.

(9)

In particular, for steady flow the pressure jump or the
normal force acting to the bound vortex per unit length
is balanced by the vortex force alone ([7],[18]):

[[p]] = ρusγ. (10)

This simple equation deserves a careful inspection.
Firstly, it does not relate local quantities themselves but
their jump or difference at two opposite local points,
which is a degenerated version of certain variation of flow
variables. As asserted in § 1, it is the variations of flow
variables (e.g., the jump of tangential velocity) that can
characterize structures (e.g., vortex sheet). Secondly, (10)
offers a simple example that the variation of pressure,
a compressing variable, can be replaced by some kind
of vorticity, a shearing variable. They can be mutually

2The sign of Γ defined here is opposite to that in [7].

transformed, but only the latter is a localized quantity.
These remarks will be fully recognized in the context of
equation (23) to be discussed in the next section.

As we go to the three-dimensional world, ω and u will
vary not only in their magnitude but also in their relative
angle (say β), as is evident from the triangle identity

|u |2|ω|2 = |ω · u |2 + |ω × u |2. (11)

Thus, for given |u | and |ω|, among various appearances of
the vortex force the one that has nearly two-dimensional
or rotationally symmetric behavior is the strongest.
It will be weakened when β reduces from the value
π/2 in two-dimensional flow. When the flow becomes
Beltramian (i.e., ω∥u) the vortex force vanishes. What
appears and grows as β decreases is the helicity density
ω · u . This quantity does not directly enter the force
interaction; its spatial integral represents the topology
of thin vortex loops. However, it is worth mentioning
that the Beltramian flow and helicity density are closely
relevant to the further intrinsic decomposition of a
vectorial shearing process into two intrinsic components,
in terms of the polarities of the flow, e.g. [21]. This
polarity decomposition is also a subclass of the process
splitting and coupling in complex flows.

3.2 Lamb Vector in the Formation of
Axial Vortices

The Lamb vector or vortex force is not only a
characteristic indicator of the lateral force on a body or
bound vortex sheet, but also an indicator of the dynamic
evolution of a free vortex sheet which is constrained by
the second line of (9). Among various motions of a
free vortex sheet, we choose to exemplify this role of
the vortex force by the vortex-sheet roll up, because
as said before this process generates axial vortices that
has important influence on the global flow behavior.
In two-dimensional flow the vortex-sheet roll-up is
fully governed by an elegant nonlinear and singular
integral-differential equation known as the Birkhoff-Rott
equation [20][22]; but it is helpful to make a qualitative
and intuitive observation based on (8) to (10), as well as
the two-dimensional version of the transport equation for
γ (Eq. (4.154a) of [7]). Namely, denoting the vortex force
by f = u × γ = (fs, fn), we have

fs = γun, fn = −γus, (12a)

D

Dt
ln γ = unκ− ∂us

∂s
, (12b)

where κ is the curvature of the sheet and un is nonzero
only for unsteady flow. Note that fn in (12a) just balances
[[p]]/ρ in (10).
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We revisit a classic vortex sheet roll-up problem, the
formation of wing-tip vortices. In the wind-axis system
(x, y, z) with x = 0 located at the trailing edge, let the
incoming flow be U = Uex and y, z axes be along the
wing span and vertically up, respectively. In Prandtl’s
lifting-line theory, the wing with minimum induced drag
has elliptical load distribution Γ(y) = 2W

√
a2 − y2,

where W = Uα with α ≪ 1 being the angle of attack.
Thus on the sectional (0, y, z)-plane the bound vortex
sheet has strength distribution

γ(y) =
2Wy√
a2 − y2

. (13)

As y → ±a, γ has a singularity of the |a−y|−1/2-type, and
so does the pressure jump due to (10). This effect leads
to a finite circulation around wing-tips which induces an
upward flow at y < −a and y > a, and a leading-edge
suction familiar in classic thin airfoil theory [20][22].

As usual, we approximate the x-wise evolution of a
steady three-dimensional wake vortex sheet by the time
evolution of an unsteady two-dimensional vortex sheet on
sectional (y, z)-planes at locations of increasing x ≃ Ut.
Referring to (12) and Fig. 1 for the right portion of the
vortex sheet pattern, some rough estimates can then be
made.3 For example:

— Right after the sheet leaves the trailing edge, the
leading-edge suction in (10) immediately causes the end
point s1 to gain un > 0, κ > 0, and hence to move up.
Then the big γ of s1 induces the neighboring points at
s < s1 to run around it to quickly form a spiral.

— The spiral entrains more and more portion of the
vortex sheet into it with us > 0 and fn < 0. The
entrained portion is stretched with ∂us/∂s > 0, while
the normal motion of s1 is slowed down.

— The whole spiral also induces us > 0 and un < 0 on
the portion of the sheet at its lower-left side, where the
sheet moves downward.

— As time goes on, the rolled part of the sheet
has increasingly many turns, of which the core region
consists of nearly concentric circles with the flow being
axisymmetric. Thus both un and ∂us/∂s vanish and γ
approaches constant.

It should be stressed that for a vortex sheet to roll up
from its end point, the end point must have big γ. If

3Since the rolling up is an unsteady motion of a material sheet
but the vortex force represents the local rate of change of the sheet
momentum, a complete dynamic discussion of the roll up has to
combine f and Γ,t into a whole along the sheet, which is not
attempted here. Instead, we use both the dynamic estimate based
on vortex force and a more intuitive kinematic estimate based on
vortex induction.

us

s1

t

n

Figure 1: The rolling up of an initially straight vortex
sheet.

γ = 0 there no this kind of roll up can happen. For
example, the flat sheet on the x-axis between x = ±1
with strength γ(x) = K

√
1− x2 is an exact solution of

the Birkhoff-Rott equation, which doe not roll up but
makes rigid rotation [22]; it has γ = 0 at the end points.
On the other hand, the leading points of roll up may also
occurs somewhere away from the end points as long as the
vortex force has proper initial behavior there. A typical
example is a straight and infinitely extended vortex sheet
disturbed by a sinusoidal wave (the Kelvin-Helmholtz
instability), which leads to periodic double-branch roll
up and hence forms an array of axial vortices.

Owing to the same mechanism of the Lamb-vector
weakening in three-dimensional flows due to the reduction
of the angle between ω and u , we may also say that
among all possible vortex-sheet rolling up patterns in
a three-dimensional world, the one that has nearly
two-dimensional or rotationally symmetric behavior is the
strongest, and when the flow becomes Beltramian the
aforementioned entrainment of spiral vortex stops.

3.3 The Curl and Divergence of the
Lamb Vector

Extensive discussions on the curl and divergence of the
Lamb vector l have been made in [7]. Reference [23]
further shows that∇·l with opposite signs corresponds to
very different local motion of the fluid: ∇·l > 0 represents
straining motions with local concentration of flow energy,
while the regions with ∇ · l < 0 constitute the vortical
motions with depleted flow energy. They found that the
Lamb-vector divergence may also describe the interaction
between the fluid with high- and low-momentum; in a
turbulent channel flow ∇· l can well capture the “sweep”
and “ejection” events which are highly relevant to the
momentum exchange in the turbulent boundary layer.

Figure 2 exemplifies the distribution of ∇ · l and ∇× l
for a numerically computed compressible turbulent flow
over an aerofoil [24]. Note that these patterns are very
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different from those of ω and ϑ for the same flow. The
nearly streamwise strips of peak ∇ · l in Figs. 2a and 2b
are associated with the turbulent shear layers, where the
strong momentum exchange occurs between the high- and
low- speed fluids. The same regions are also captured by
∇ × l , indicating the rapid change of the vorticity due
to the temporal evolution of the shear layer. Moreover,
∇ × l is quite large in the shock wave regions, see the
nearly vertical strips starting from the wing surface in
Figs 2c and 2d, because the curve shock produces new
vorticity; but these strips are not revealed by ∇ · l ,
indicating that although there is a very strong transition
from high- to low-momentum across the shock wave the
high/low-momentum interactions are weak.

Figure 2: Instantaneous distributions of ∇ · l at (a) t∗ =
0.5 and (b) t∗ = 0.625, and ∇× l at (c) t∗ = 0.5 and (d)
t∗ = 0.625 [24]. t∗ is dimensionless time.

3.4 Pressure-Caused Boundary
Vorticity Flux

We now turn to the BVF caused by the pressure gradient,
σp. As stated by [25], the σp plays a dual role on the wall.
On the one hand, as the tangential pressure gradient, σp

is an on-wall signature of the entire flow and measures
the local dynamics of compressing process. On the other
hand, as a cause or on-wall root of the vorticity field,
it measures the local dynamics of shearing process. For
incompressible flow, the BVF is the only source of the
vorticity in the entire flow field. It is a general rule
that the evolution of boundary vorticity is a space-time
accumulated effect of, and hence has a phase lag behind
the BVF.

For example, in a two-dimensional attached
boundary-layer on the (x, y)-plane, Fig. 3 (not to
scale) sketches its velocity profile u(y), vorticity profile
ω(y) = −u′(y), and BVF σ = −νω′(y)|y=0 = p′(x). The
driving mechanism is clearly the pressure gradient p′(x)
in the potential flow outside the boundary layer. The
newly generated ω > 0 by a σp > 0, once diffused into
the fluid, will weaken the existing ω < 0 in the boundary
layer. If this weakening mechanism continues to make ω
change sign, flow separation will occur.

x

x

x

σ

ω

u

(a)

(b)

(c)

Velocity profile

Vorticity profile

Boundary vorticity flux

Figure 3: Sketch of the profiles of velocity (a), vorticity
(b), and the variations of the fluxes of vorticity (c) on the
wall, for a flat-plate flow in a pressure gradient changing
from favorable to adverse. After [7].

This being the case, a BVF peak must signify some
important local event in the boundary layer, including the
whole boundary-layer separation that may alter the entire
flow field. Indeed, according to the triple-deck theory,
whenever there is some sudden change in downstream flow
condition, for example a discontinuity of the wall slope or
curvature, the flow in the sublayer adjacent to the wall has
to adjust itself to fit the sudden change, which must cause
an interaction with the outer potential flow associated
with a local interactive pressure of O(Re−1/4) ≪ 1. But
this pressure increment occurs within a small interval of
O(Re−3/8), resulting in a large local tangential pressure
gradient and hence a BVF peak, of O(Re1/8) ≫ 1.
While the small interactive pressure is hard to capture
by calculation or measurement, the big BVF peak can
be easily found to make it a sensitive indicator of abrupt
changes in the near-wall flow.

For instance, Fig. 4 compares the distributions of the
pressure and BVF on the inducer surface of a centrifugal
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pump. The former is quite smooth over the entire blade,
but the latter has strong fluctuation at three streaks,
which are precisely the locations known to easily have
cracks. A subsequent study has confirmed that right at
these streaks the surface curvature was discontinuous.

Figure 4: The distributions of the pressure (a) and BVF
(b) on the inducer blade of a centrifugal pump [25].

In three-dimensional flow, like the relative orientation
of ω and u varies and matters, so does that of the on-wall
vector lines of the skin-friction τ = µω × n and BVF in
the analysis of near-wall flow patterns. While generically
in smooth attached flow region the BVF lines have large
angles with τ lines as in two-dimensional flow, the big
BVF peak in the narrow triple-deck zone may turn the
BVF lines to the direction almost aligned to the τ lines
indicating that the boundary layer is separating. This is
exemplified by Fig. 5 for the (σp, τ )-lines on the suction
side of the rotor blade of a compressor. At the upper
middle region, the red τ -lines converge and go upward,
where the σp-lines are basically along the same direction.
Reference [12] proposed the convergence of the τ -lines
to be the criterion of three-dimensional flow separation.
But it is insufficient to characterize the boundary-layer
separation unless the (σp, τ ) alignment is added.

Figure 5: The vector lines of the skin-friction τw (red)
and BVF σp (black) on the suction side of a rotor blade
of a transonic compressor [26].

3.5 The Formation of Near-Wall
Lamb Vector

Having clarified the generation of vorticity at the wall, we
may return to the Lamb vector l to look at its formation.
Of course this must happen inside the boundary layer
as well; and, above a stationary wall there must be a
Lamb-vector maximum lmax inside the boundary layer as
illustrated in Fig. 6. Later we shall see that this lmax

is the major contributor of the entire vortex force acting
on a wing. Here let us examine how this near-wall Lamb
vector is formed and estimate its order of magnitude.

Figure 6: The normalized u, ω and ly = uω profiles in
the Blasius boundary layer.

Let h be a small hight in an attached boundary layer.
A Taylor expansion along the normal yields [27]

ln = ω2
bh− 3

2ν
(ωb · σ)h2 +O(h3), (14a)

lπ = −1

ν
σnωbh

2 +O(h3), (14b)
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where suffix π denotes tangential components of a
vector, ωb is the on-wall vorticity, and σn is the
normal component of the BVF. In general σn is an
O(Re−1/2) three-dimensional effect; it will be appreciable
only in a small neighborhood of a spiral fixed point of
the skin-friction field, associated with the formation of
horn-like vortices. For the series to converge h should be
at least as small as the boundary-layer thickness. Thus,
in laminar flow the normal and tangential components of
the Lamb vector, ln and |lπ|, are of O(Re1/2) and O(1),
respectively. This implies that the wall-normal vortex
force is dominant in these regions.

When the boundary layer separates the Taylor
expansion does not work well. To illustrate the behavior
of the Lamb vector in a zone surrounding the separation
point s, we employ the triple-deck theory and consider
two-dimensional steady separation. Let (x, y) be the
wall-parallel and wall-normal coordinates. Upstream the
separation zone the boundary layer is attached and the
above arguments are still true. Around a region with
x− xs = O(Re−3/8), a viscous and rotational lower deck
appears adjacent to the wall that introduces additional
displacement and perturbation to the main and upper
decks. The Lamb vector field is altered simultaneously.

In the upper potential-flow deck we still have l = 0.
The main deck is basically the upstream boundary layer
lifted by the new lower deck, where the perturbed flow
quantities are [7][28]

(u, v, ω) = (UB , δ
4VB , δ

−4ΩB) + (δŨ , δ2Ṽ , δ−3Ω̃) + · · · ,

where the capital letters denote the normalized quantities
of O(1), subscript B stands for quantities of the upstream
attached boundary layer, and δ = O(Re−1/8) ≪ 1 is a
new length scale. Then we find

lx = −Re1/4ΩBṼ +O(Re1/8), (15a)

ly = Re1/2ΩBUB

+Re3/8(UBΩ̃ + ŨΩB) +O(Re1/4). (15b)

Once again, the normal components of Lamb vector ly is
much larger than the tangential component lx. The first
term in (15b) is the same as in the attached boundary
layer. The other terms in (15) are the perturbation
introduced by the lower deck. Remarkably, the extra
ly is of O(Re3/8), and lx is now of O(Re1/4) instead
of O(1). As for the lower deck, the scale analysis gives

(u, v, ω) = (δŨ , δ3Ṽ , δ−4Ω̃) + · · · , so that

(lx, ly) = (−Re1/8Ω̃Ṽ , Re3/8Ω̃Ũ) + · · · . (16)

Namely, in the lower deck the normal vortex-force density
is of O(Re3/8). The appearance of the lower deck
enhances ln in both the main and lower decks. Moreover,

in the lower deck both u and ω have the opposite sign
to that in the main deck, so that ly has the same sign in
both decks. These explain that the free shear layer just
after the boundary layer separation has stronger vortex
force, as has been found numerically ([27],[29]; see Fig. 11
below).

4 Total Force-Moment by Local
Flow Structures

Having identified the key indicators of vortical structures
and interactions, we may now study how these structures
and interactions dominate the global flow performance.
To this end we just need to transform the conventional
performance expressions (which are some integrals) so
that those indicators appear explicitly in the new
integrands. In this section we illustrate the approach
by considering the total force and moment acted on the
body. Some other performances (not all) can be treated
similarly.

4.1 Physical Constituents of
Vortical Forces

In this article we call any force originating from vorticity
interaction a vortical force, some of which were seen in
our discussion of (9): the Lamb vector or vortex force,
and the local time rate of circulation (vorticity). To gain
an overall concept on the physical constituents of vortical
forces, consider an incompressible flow over a body B
which may perform arbitrary motion and deformation.
We investigate this fluid-body interaction problem in a
domain Vf bounded externally by a fixed control surface
Σ and internally by the material body surface ∂B which
has prescribed velocity distribution uB . The domain Vf

is depicted in Fig. 7, whereafter n stands for the unit
normal at the boundary pointing out from the fluid. Let

a = u ,t + ω × u +∇
(
1

2
|u |2

)
(17)

be the fluid acceleration. The force exerted to the body
by the fluid can be expressed as

F = −ρ

∫
Vf

adV +

∫
Σ

(−pn + τ )dS, (18)

in which −pn and τ = µω×n are the normal and shear
stresses, respectively. From this conventional formula one
sees no vortical structures except the shear stress, which
is typically related to boundary layers. Let us make the
vortical structures appear explicitly.
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Figure 7: The sketch of the control volume and the body.

It is always possible to extend the incompressible flow
field of density ρ into the material body B , as long as on
∂B the velocity and acceleration, uB and aB , have the
prescribed distributions. This continuation of the flow
field into B enables writing the right-hand side of (18)
in terms of a fixed control volume V = Vf + B with only
an outer boundary Σ, no matter how the material body
moves and deforms in V . Then by substituting (17) into
the integral of a over V , one obtains

F = −ρ

∫
V

u ,tdV − ρ

∫
V

ω × udV

+ρ

∫
B

aBdV +

∫
Σ

(−Pn + τ )dS,

where P = p + ρ|u |2/2 is the total pressure. The total
vortex force shows up again.

To further exhibit the role of vortical structures in the
force, recall that they are measured by the derivatives
of the velocity field rather than the velocity itself.
One way to reveal their role is to perform so-called
derivative-moment transformation (DMT) via integral
identities for arbitrary smooth vector field f and scalar
field ϕ, such as∫

Vf

f dV =
1

k

∫
Vf

x × (∇× f )dV

−1

k

∫
∂Vf

x × (n × f )dS, (19a)∫
S

ϕndS = −1

k

∫
S

x × (n ×∇ϕ)dS, (19b)

in which k = n − 1 with n = 2 or 3 being the space
dimension, and S is a close surface.4 Besides, to focus on
our main issue we assume temporarily that Σ is not very
close to the body surface so that τ is negligible thereon,
and hence

ρ(u ,t + ω × u) +∇P = 0 at Σ. (20)

4The DMT theory and applications has a history of more than
a century. It is not the only way to cast the integral of a variable to
that of its derivatives. An alternative approach is the “projection
theory”, see [7].

Then, by using (19a) and (19b) to transform the volume
integral of u ,t and boundary integral of Pn in the above
force formula, respectively, we obtain

F = −ρ
dI

dt
+ρ

d

dt

∫
B

uBdV −ρ

∫
V

ω×udV +FΣ0, (21a)

in which

I =
1

k

∫
V

x × ωdV (21b)

is known as the vortical impulse (the first vorticity
moment) in V and

FΣ0 =
1

k

∫
Σ

x × [n × (ρu ,t +∇P )]dS

= −ρ

k

∫
Σ

x × (n × l)dS (21c)

is a control-surface integral over Σ.

The integrand of the third terms of (21a), i.e., the total
vortex force, has been discussed in § 3.1. The appearance
of the forth term implies the effect of vortical wake that
may extend out of Σ. If the body is stationary and the
flow is steady inside V , only these two terms remain,
solely in terms of the vortex force:

F = −ρ

∫
V

ldV − ρ

k

∫
Σ

x × (n × l)dS. (22)

It has been found that the first integral gives the lift and
(in three dimensions) the inviscid induced drag, while the
second one represents a viscous profile drag at finite Re
that can be estimated at a wake plane [7].

In particular, in the asymptotic limit Re → ∞, it
is known that for two-dimensional steady flow there is
no wake vortex sheet, while for three-dimensional steady
flow the Lamb vector γ × u of free vortex sheet must
vanish [7]. Thus we simply have the direct equivalence
of total pressure force and vortex force, known in various
contexts since [17]:∫

∂B

pndS = ρ

∫
V

u × ωdV, (23)

where ω is actually only the vorticity inside the attached
vortex sheets. Recall the remarks made in the context
of (10), of which we now see that (23) is a direct
generalization. It is also worth noticing that this
central result in classic inviscid aerodynamics [18] can
be obtained in a very neat alternative way for any
“wake-free” steady flow. In fact, by the Bernoulli theorem
the total pressure force on the body surface is5

F p ≡
∫
∂B

pndS = −ρ

∫
∂B

1

2
|u |2ndS.

5This equation contains (10) as a special case. Thus, the
algebra below also provides a simple way to rigorously derive the
Kutta-Joukowski formula (26) from (10).
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Now recall a classic integral identity for any vector field
f over a domain D:∫

D
(∇× f )× f dV =

∫
∂D

(
n · f f − 1

2
|f |2n

)
dS, (24)

where we specify f as u and D as Vf in which ω = 0
except the attached vortex sheets. Since un = 0 on ∂B
we immediately obtain

F p = ρ

∫
Σ

(
1

2
|u |2n − uu · n

)
dS

where Σ encloses V = Vf +B. Thus (23) follows at once
by using (24) again. However, only (22) can fully clarify
in what physical circumstance the “wake-free” condition
holds.

Moreover, let U = Uex be the uniform incoming
velocity and write u = U + v such that

F p = ρU ×
∫
V

ωdV − ρ

∫
V

ω × vdV. (25)

Here, v is the disturbance velocity induced by the
vorticity, i.e., ω = ∇× v . Then by using the Biot-Savart
formula for v , reference [18] has elegantly proved that
in and only in two-dimensional flow the above second
integral vanishes identically provided that ω and v span
the same V . Therefore, the Kutta-Joukowski formula
follows from (25) at once:

F = ρU × Γ with Γ = ez

∫
ωdV, or Fy = −ρUΓ,

(26)
where Γ is the total vorticity inside the attached vortex
sheets.

We now turn to the first term of (21a),

−ρ
dI

dt
= −ρ

k

∫
V

x × ω,tdV, (27)

which plays a role somehow similar to the unsteady term
in (9). It is especially useful for pinpointing the local
regions where the vortical flow unsteadiness is maximal
or the source of it (by surveying the time evolution of
the flow). For example, the spontaneous unsteadiness
caused by vortex instability and breakdown has been a
major concern in various practical problems. Then, when
the body has non-inertial motion and deformation, the
second term of (21a) appears. It is a familiar inertial
force due to the acceleration of the fluid displaced by
B, but not the virtual-mass effect caused by the body
acceleration. The latter is conventionally explained by
a non-cyclic potential-flow model, but actually has been
included in (27) as proved in [30] and [7]. Therefore, we

may say that all incompressible aerodynamic forces are
vortical.

Finally, when V expends to the entire space V∞ with
the fluid at rest or uniform motion at infinity such that
the starting vortex system is also enclosed, by (24) it can
be easily shown that the total vortex force disappears.
Then (21a) reduces to

F = −ρ
dI∞

dt
+ ρ

d

dt

∫
B

uBdV, (28)

where I∞ denotes the vortical impulse in V∞.
This elegant formula is the very basis of the
Burgers-Wu-Lighthill vorticity-moment (impulse) theory
([31]-[33]), where the flow is surely unsteady. The
conditions for (22) and (28) are mutually exclusive. The
vorticity-moment theory may find extensive applications
in the study of the motion of fish, insects, and birds (e.g.,
[34]); but since in practice it is impossible to measure or
calculate the flow data in the entire V∞, (28) needs to
be and has been generalized to a form suitable to finite
domain [7].

4.2 Force-Moment by Advection vs
Diffusion

In what follow we remove the preceding simplified
assumption that τ is negligible on Σ, and present
completely general force and moment formulas to be
used in engineering applications. We also give their
generalization to compressible flow. The flow domain Vf

is still shown by Fig. 7. The emphasis is on the inherent
relations of different expressions. For their derivations
see [7] and [29].

We start again from (17). In general, we find that
F has three constituents, a volume integral over Vf ,
a body-surface integral over ∂B, and a control-surface
integral over Σ. We thus write

F = FV + FB + FΣ. (29)

Here, the two surface integrals are found to be

FB =
1

k

∫
∂B

ρx × σadS, (30a)

FΣ = −µ

k

∫
Σ

x × [n × (∇× ω)]dS +

∫
Σ

τdS, (30b)

where we recall that σa = n × aB is the BVF due to
body-surface acceleration, τ = µω×n is the shear stress,
and k = n − 1 with n = 2, 3 being the space dimension.
The volume integral can be alternatively expressed as

10



advection form and diffusion form:

FV = −ρ

k

∫
Vf

x × ω,tdV − ρ

∫
Vf

ldV

−ρ

k

∫
∂Vf

x × (n × l)dS (31a)

= −µ

k

∫
Vf

x ×∇2ωdV, (31b)

of which the equivalence is evident if one recalls the
vorticity transport equation (3a) and the DMT identity
(19a). The sum of vortex force and unsteady force in
the advection form, discussed in the preceding subsection,
gives the diffusion form.

At Re ≫ 1, a flow field created by a body motion
may be generally divided into three regions. In the outer
and largest region the flow is irrotational and effectively
inviscid. In the small inner region close to the body there
are boundary layers and separated shear layers, where the
flow is both rotational and viscous. In between of the two
is an effectively inviscid and rotational region, the wake.
Thus, following the learning order of the aforementioned
observer, one would first see the strongest axial vortices
signified by the integrands of the advection form (31a),
and then free and attached shear layers signified by the
integrand of the diffusion form (31b). Only in the inner
region the two inviscid terms ω,t and ∇× l of (3a) do not
cancel out but equals an appreciable viscous term ν∇2ω.

The situation can be illustrated by the unsteady
separated flow over a circular cylinder. Figure 8 plots
the contours of the integrands in the volume integrals of
(31a) in the vortical wake region. All wake vortices are
obviously involved, but as a vortex moves downstream
both ω,t and vertical velocity v change sign at a spatial
point, so that the Lamb vector in each vortex has both
the positive and negative contributions to FV , which
are largely canceled. This fact has been quantitatively
confirmed [29]. The remaining net contribution to FV is
nothing but that given by the integrand of (31b), which
captures precisely the attached boundary layers and free
separated shear layers before the latter roll into axial
vortices. This is shown in Fig. 9 for the same cylinder
flow. Therefore, it suffices to focus on the near-wake
region before the wake vortices are formed and shed into
the Kármán street.

For the total moment we have similar results. We start
from

M = −ρ

∫
Vf

x × adV +

∫
Σ

x × (−pn + τ )dS +M sΣ,

(32a)
where there is an extra viscous term (for the origin see,

Figure 8: Contours of the volume integrands in (31a) for
flow over circular cylinder [29].

e.g. [7], § 2.4.2)

M sΣ = −2µ

∫
Σ

n × udS = −2µ

∫
V

ωdV. (32b)

The DMT identity for transforming (32a) is

2

∫
Vf

x×f dV = −
∫
Vf

x2∇×f dV +

∫
∂Vf

x2n×f dS. (33)

Then we write

M = M V +MB +M Σ, (34)
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Figure 9: The contours of the integrand in (31b) for flow
over circular cylinder [29]. (a) the drag component and
(b) the lift component. The total range of the value is
[−64, 183] for (a) and [−343, 238] for (b).

where

MB = −1

2

∫
∂B

ρx2σadS, (35a)

M Σ =
µ

2

∫
Σ

x2n × (∇× ω)dS

+

∫
Σ

x × τdS +M sΣ, (35b)

and

M V = ρ

∫
Vf

(
1

2
x2ω,t + x × l

)
dV

+
1

2

∫
∂Vf

x2n × ldS (36a)

=
µ

2

∫
Vf

x2∇2ωdV. (36b)

In practical applications the body surface ∂B and/or
control surface Σ on which the flow is to be analyzed
could be open, bounded by closed boundary curves. This
situation occurs if one’s concern is the aerodynamics force
of a wing alone rather than a whole aircraft, or the total
moment of the rotor or runner blades in turbo flows rather
than the whole rotating part. In this case extra line
integrals along the boundary loops of open surfaces have
to be added. The extension of the above expressions to
this situation has been given by [29].

4.3 Force-Moment by BVF

If the aforementioned observer wishes to trace further
from near-wall shear layers to their on-wall physical root,
he or she would come to the force-moment expressions
solely in terms of on-wall vortical quantities. The Lamb
vector disappears, and the integrands are in terms of
the BVF σ and boundary vorticity ωb. The desired
expressions can be obtained by shrinking the control
surface Σ to collapse to the body surface ∂B with Vf → 0.
Note that the normal vectors of the two surfaces were in
the opposite directions, i.e. n∂B = −nΣ. In keeping with
our convention that n is the normal pointing out of the
fluid, it follows that

F =
1

k

∫
∂B

ρx × [σa + νn × (∇× ω)]dS +

∫
∂B

τdS, (37)

M = −1

2

∫
∂B

ρx2[σa + νn × (∇× ω)]dS

−
∫
∂B

x × τdS − 2µ

∫
B

ωdV. (38)

By the identity

n × (∇× ω) = −∂ω

∂n
+ (n ×∇)× ω

and boundary coupling relation (4b), and using the
notation of (5b), these formulas are reduced to

F = −1

k

∫
∂B

ρx × σpdS +

∫
∂B

τdS, (39)

M =
1

2

∫
∂B

ρx2σpdS

+

∫
∂B

x × τdS − 2µ

∫
B

ωdV. (40)

The main contributor to F and M is the moments of
pressure-gradient caused BVF, σp = O(1). In and only
in three-dimensional flow, the integrals of shear stress τ
and its first moment can be cast to those of the first and
second moments of the viscous BVF, σv, by some other
DMT identities [7]. Then F and M are expressible solely
in terms of BVFs. But in practical flow diagnoses and
optimal configuration designs at sufficiently large Re, it
is usually sufficient to consider only the inviscid portion
of these expressions.

Equations (39) and (40) can also be extended to open
body surface with closed boundary loop. Relevant extra
line integrals have been given by [7], § 11.4.1.

4.4 Extension to Compressible Flow

Incompressible flow is a model flow in which not only the
thermodynamic process is completely decoupled but also
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the coupling between compressing and shearing process
is minimal and occurs merely at boundary. The role
of pressure can be entirely eliminated in the interior of
the flow. Once we enter compressible flow, the interior
coupling of the three processes takes place and becomes
stronger as the Mach number increases. But some of the
preceding force-moment expressions remain unchange,
provided that µ is still assumed constant. These include
the expressions of FB and FΣ and their counterparts for
the moment, and the diffusion form of FV andM V . Only
their advection form needs to be revised. For example,
(31a) should be generalized to ([7],[29])

FV = −1

k

∫
Vf

x ×∇× (ρu ,t)dV −
∫
Vf

(
ρl − 1

2
|u |2∇ρ

)
dV

−1

k

∫
∂Vf

x ×
[
n ×

(
ρl − 1

2
|u |2∇ρ

)]
dS. (41)

In this formula, the integrands ρl and |u |2∇ρ/2 are
dominated by the shearing and compressing processes,
respectively (still with some cross coupling, since ρ is
a compressing variable and u comes from both). The
unsteady term is a combination of both processes. In
contrast to the vortex force ρl (per unit volume) that
always produces a force lateral to both local velocity
and vorticity, the “compressing force” |u |2∇ρ/2 always
produces a force pointing to the local density increment
direction. This is true not only across shock waves but
also in the entire range of local Mach-number M from
subsonic to supersonic flows. For example, in a steady
one-dimensional fluid tube of variable sectional area A,
the “compressing force” acting to the fluid element is

dFf = −1

2
u2dρ = −1

2
ρu2 M2

1−M2

dA

A
. (42)

Thus, we have dFf > 0 or the fluid is accelerated if either
M < 1 and dA < 0 or M > 1 and dA > 0 as it should be.

We remark that although (41) is an exact formula and
can be conveniently used in complex flow diagnosis, it
is not yet the final result. The density variation may
still be split to an isentropic part (which amounts to the
variation of local Mach number) and an entropy-caused
part, of which a detailed identification could be desired.
We leave this issue to future study.

5 Complex Flow Diagnosis and
Optimization

The preceding sections, developed from the general theory
on multi-process decomposition and coupling, form a
quite systematic theoretical framework for complex flow
diagnosis and optimization, which may be called local

dynamics theory for short. In this section we show a set
of examples of significant practical value where the LDT
plays an indispensable role.

5.1 Delta-Wing Flows

Reference [27] conducted a diagnosis of the steady flow
over a delta wing of sweep angle Λ = 76◦ at the angle
of attack α = 20◦. The Reynolds number based on the
root-chord length c and uniform incoming velocity U is
Re = 5 × 105. The typical vorticity distribution on a
sectional plane x/c = 0.8 is plotted in Fig. 10. Obviously,
the axial-vorticity ωx concentrates in boundary layers,
separated shear layers and the primary vortex. In each
axial vortex (e.g., the primary and the secondary vortices)
the vorticity is nearly along the axial direction, so on
sectional planes perpendicular to the vortex axis the
velocity takes opposite signs at the different sides of the
axis. As a result, the distributions of the Lamb vector
components in each axial vortex are divided into two parts
with different signs, as shown in Fig. 11 for lx and lz on
the same sectional plane.

0 0.1 0.2

0

0.1
800

400

0

-400

-800

A B CD

z/c

y/c

Region III

Region II

Region I

ωx
x/c=0.8

Figure 10: Contours of the axial vorticity ωx on the cross
section x/c = 0.8, where A, B, C andD denote secondary
separation, tertiary reattachment, tertiary separation and
secondary reattachment, respectively [27].

In [27], formula (22) has been used to quantitatively
identify the contributions of various vortical structures
to the aerodynamic forces. These structures were
distinguished by dividing the flow domain into three
subdomains and then calculating the integrals in (22)
separately. As indicated in Fig. 10; Region I with z < 0
contains the attached boundary layer of the lower wing
surface, Region II contains the attached boundary layer of
the upper surface, the secondary and tertiary separated
vortices, and the initial portion of the free shear layer;
and Region III contains the main leading-edge vortex and
the feeding shear layer outside Region II. Figure. 12 plots
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Figure 11: Contours of the normal component of Lamb
vector lz (a) and the axial component lx (b) on the cross
section x/c = 0.8 [27].

the spanwise distributions of these contributions to the
normal and axial force coefficients on the section x/c =
0.8. The lift has two major sources from Region II and III,
i.e., the free shear layers formed after the separation of the
upper boundary layer and before joining the secondary
separated vortices, and the feeding shear layer of the
main vortices, respectively. The axial vortices make
small contribution due to the Lamb-vector cancelation
among its opposite-sign regions seen in Fig. 11. The
upper and lower attached boundary layers have positive
and negative contributions. Although these different
structures lead to an uneven spanwise distributions in
Fig. 12(b), the total or net axial force is rather small.

The above diagnosis contradicts one’s conventional
understanding that the leading-edge vortices themselves
provide the major additional lift at large α (in fact, so far
no exact theory can prove this assertion), but confirm our
general observation on the advection and diffusion forms
of the vortical forces (§ 4.2). However, it is these axial
vortices that change the behavior of other flow structures
including inducing the separation of the upper boundary
layer. The shear layer formed thereafter produces large
vortex force, which is related to the curve of Region II
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C
z
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C
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Figure 12: Spanwise contributions of the normal force
coefficient Cz (a) and the axial force coefficient Cx (b) at
the section x/c = 0.8 [27].

in Fig. 12. But as soon as this shear layer rolls into the
secondary vortex, it again contributes little to the vortex
force.

An unsteady flow over a delta wing of moderate
sweeping angle Λ = 50◦ at α = 15◦ has been diagnosed
by [36] based on (31a). The flow unsteadiness is
caused spontaneously by the high-frequency shear-layer
instability (St ∼ 10) and vortex breakdown, the latter
including unsteady modes in breakdown regions (St ∼ 1)
and fluctuation of breakdown location (St ∼ 0.1). The
main causes of the total force are the two volume integrals
in (31a). Their integrand distributions on two sectional
planes at x/c = 0.2 (before breakdown) and 0.7 (after
breakdown), both the axial and normal components, are
shown in Fig. 13, where the time-averaging was made
over short waves to remove high-frequency fluctuations
(of which the instantaneous peaks of ω,t were found
to be larger than its short-wave average by 2 to 3
orders) and retain only the effect of lowest-frequency
(St ∼ 0.1). The Lamb vector overwhelms the short-wave
averaged unsteady vortical force both before and after the
vortex breakdown; but itself is somewhat reduced after
breakdown that loosens the axial vortices.
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Figure 13: The distributions of the x and z components of x × ω,t and l at x/c = 0.2 (left column) and x/c = 0.7
(right column), averaged over time [36]. The figures on the left are more magnified than those on the right.

5.2 Compressible Flow Over
Wavy Cylinder

Bluff-body flow is one of the most important types of
complex flows. Its management aiming at reducing
the drag and suppressing the flow fluctuation is of
considerable interest at both fundamental and applied
levels. While most existing investigations have focused
on flow over straight cylinders, flow over a wavy cylinder
whose diameter varies sinusoidally along the span has
recently caught significant attentions due to its lower drag
and force fluctuations. Wavy cylinder could become a
prototype configuration for the study of bluff-body flow
management. The relevant progress has been reviewed
by [35], who made a large-eddy simulation and analysis
of a compressible flow past a wavy cylinder at free-stream
Mach numberM∞ = 0.75 and Reynolds number Re = 2×

105 based on the mean diameter D. The wave amplitude
and spanwise wavelength are 0.1D and 2D, respectively.
The flow complexities come from both shearing and
compressing processes as well as their coupling, both
inside the flow field and on cylinder surface. Here we
outline those findings of [35] relevant to our vortical flow
diagnosis and add a few short discussions.

By using the compressible force formula (41) (with
proper line integrals added along the boundaries of the
open end surfaces of the cylinder), it has been found that
the time-average drag is reduced by 26% compared to the
straight cylinder, and the lift fluctuation is suppressed
by over an order. The compressing and shearing sources
of the drag were assessed by calculating the following
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regrouped terms in (41):

F comp =
1

2

∫
Vf

|u |2∇ρdV

+
1

2

∫
∂Vf

x ×
(
n × 1

2
|u |2∇ρ

)
dS, (43)

F shear = −
∫
Vf

ρldV − 1

2

∫
∂Vf

x × (n × ρl) dS. (44)

For the straight cylinder, the drag coefficients given
by F comp and F shear are 0.45 and 0.34, respectively,
indicating that the compressing process produces more
drag than shearing process for this case. For the
wavy cylinder, these two values are 0.35 and 0.24, with
reductions of 22% and 29%, respectively. Thus, the drag
reduction due to the shearing process prevails over that
due to the compressing process in this flow. Now the
question is why.

A direct reason for the reduction of F comp and F shear

on wavy cylinder is the appearance of the spanwise
components of ∇ρ and the vortex force −ρl = ρ(u × ω)
which are eventually canceled because of the periodic flow
conditions in that direction. Thus, for the same |u |2|∇ρ|
and ρ|u ×ω|, the drag and lift on the wavy cylinder will
be smaller. Besides, one more mechanism is the reduction
of the angle between u and ω (say β) from π/2 as pointed
out in § 3.1. In fact, on the wavy cylinder the mean-flow
separation line is also wavy [35], implying that in the
separated shear layers β must decrease. The locations
where β is significantly reduced may be identified by the
magnitude of the helicity density |ω ·u | (not shown here).
This additional mechanism existing in vortex force only
should be a cause of more drag reduction in the shearing
process than that in the compressing.

To make more detailed diagnosis of the physics
behind the drag and fluctuation reduction, Fig. 14
depicts the computed wake vortices defined by the the
Q-criterion (cf. [7]). A prominent change is that at the
near-wake region the vortical structures are much less
active behind the wavy cylinder than that behind the
straight one. This fact can also be seen from distributions
of ∇·l in the cross-section planes, Fig. 15. The two-layers
structures with positive and negative values capture
the free shear layers. Clearly, for the wavy cylinder
the shear layers are more stable and extend to much
more downstream locations than that separated from the
straight cylinder.

A closer inspection of the wake-structure evolution
by [35] has further revealed that the main cause of the
above wake-pattern change should be attributed to the
postponed and weakened roll-up process of the separated
shear layers, compared with the straight cylinder. This is
precisely what one may anticipate based on the argument

Figure 14: The vortices illustrated by the Q-criterion (Q
is assigned to the same value in both plots): (a) wavy
cylinder, (b) straight cylinder [35].

Figure 15: The instantaneous distributions of the
Lamb-vector divergence in cross-sections: (a) location
with maximum diameter, (b) location with middle
diameter, (c) location with minimum diameter, and (d)
straight cylinder [35].
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at the end of § 3.2. As a result of the β decrease
between u and ω, not only is F shear reduced but also
the roll-up process becomes milder or weaker. When β
reduces to zero the roll up cannot happen at all. This
situation can be clearly understood by comparing the
vortex systems generated by a rectangular wing of large
aspect ratio and a slender wing of small aspect ratio,
both at large angles of attack; so far as their respective
vortex systems are concerned, these wing flows are the
analogies of the straight cylinder and wavy cylinder of
one wavelength. Consequently, for the wavy cylinder,
the longer downstream extension and delayed/weakened
roll up of the free shear layers lead to smaller and more
streamwise-oriented axial vortices, which in turn result in
the elimination of shocks and shocklets in the wake region
as observed by [35]— another reason for the reduction of
F comp.

5.3 Optimal Design of Compressor
Rotor Blade

Turbo flow is a highly important but very difficult area
in complex flow diagnosis and management. The global
performance of turbo-machines involves inevitably the
total force and especially the total moment, but one’s
ultimate concern is some other criteria, for example
the stagnation-pressure ratio (SPR) and efficiency of a
turbofan compressor, defined by proper flow integrals
over sectional planes at inlet and exit of the compressor.
In this case a simple derivative-moment transformation
other than those used in § 4 can be applied to expose the
role of vortical-flow structures and their couplings with
compressing process in relevant integrals. For example,
in terms of cylindrical coordinates (r, θ, z), let S0 be a
sectional plane at z = z0, and R1(z) and R2(z) be the
generators of the hub and shroud, respectively. The
integral of variable f(r, θ, z) over S0 can then be cast to
the r-moment of ∂f/∂r [37]:∫

S0

frdrdθ =
1

2

[∫ 2π

0

(fr2)
∣∣R2

R1
−

∫
S0

r2
∂f

∂r
drdθ

]
(45)

at z = z0.

Thus, for a unidirectional and axisymmetric flow, the
mass flux can be cast to

Q =

∫
S0

ρuzdS =
1

2

∫
S

rρωθdS,

indicating that the mass flux is dominated by the
r-moment of the azimuthal vorticity, which has high
peak in boundary layer. One may then immediately
realize that boundary-layer separation could reduce this
ωθ-moment and hence the mass flux.

Similarly, a combination of (45) and the NS equations
can cast the stagnation-pressure flux (SPF) to a form
in which the integrand is mainly the r-moment of the
r-component of the Lamb vector, lr = ωθuz − ωzuθ.
A three-dimensional numerical investigation [38] and a
theoretical analysis [37] on an axisymmetric through-flow
model have both confirmed that of the two terms of lr
the ωθ-term is again dominant. Namely, one has

SPF =

∫
S

P ∗uzdS

=
1

2

∫
S

r2(P ∗ + ρu2
z)ωθdrdθ + small terms, (46)

where P ∗ is the stagnation pressure. Therefore, ideally,
the optimal ωθ-distribution would be to concentrate in
the large-r region, i.e., like the mass flux, ωθ should
vanish in the effectively inviscid core flow and only
peak in the boundary layers adjacent to the hub and
shroud that should remain attached. While this optimal
distribution can hardly be achieved in reality, embedding
it into the primary design procedure can yield an optimal
yet preliminary blade geometry. A three-dimensional
numerical verification has then shown that, compared
with the conventional preliminary design, this approach
raises the peak values of the SPR and efficiency by 1.7%
and 1.1%, respectively [37].

Then, as one enters the three-dimensional compressor
flow diagnosis and detailed design, one may optimize the
axial moment exerted to the fluid by rotor blades. After
neglecting all viscous terms and adding a line integral for
open surface in the BVF-based moment formula (40), this
axial moment reads

Mz|to fluid = −Mz = −1

2

∫
∂B

ρr2σpzdS +
1

2

∮
C
pr2dz,

(47)
where the closed-line integral is along both the top and
root boundary curves of the blade’s open surface ∂B
which dominates the local contribution to Mz there.
Reference [26] has utilized (47) to diagnose the transonic
flow around the blade. The distribution of σpz on the
suction side of the original blade is shown in Fig. 16(a).
A large positive peak appears at the middle region, where
locates a strong tangential pressure gradient along the
chord direction induced by a shock wave. This shock wave
causes a boundary-layer separation indicated by the local
(σp, τ ) alignment criterion (§ 3.4), as has been shown in
Fig. 5. The boundary-layer separation weakens the SPR
and efficiency. The rotor performance will be enhanced
by minimizing the separation zones and the BVF peak,
which will in turn increase Mz|to fluid.

To this end, an optimal-design method has been
developed to maximize the first integral of (47) on a
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Figure 16: (a) Axial BVF (σpz) on the suction side of an
original compressor’s rotor blade; (b) σpz on an optimized
blade’s suction side [26].

set of sectional foils at the middle part of S, and the
second integral on the tip and root [26]. Fig.16(b)
presents the axial BVF distribution on the suction side
of the optimized blade. The unfavorable positive peak of
σpz in Fig.16(a) was weakened and shifted downstream,
indicating that the shock wave and its induced separation
was significantly suppressed. As a result, the axial
moment was increased by 6%, and at the rotor’s
peak-efficiency point the SPR and adiabatic efficiency
were increased by 5.73% and 1.11%, respectively, see
Fig. 17.

5.4 Optimal Design of Wind-Turbine
Blades

The same axial-moment formula (47) has also been
used by [36] to diagnose the wind-turbine flow field and
perform optimal design, the only difference being that
now the moment Mz acting to the turbine blade needs to
be maximized.

The prototype of the configuration was a NERL phase
VI wind-turbine blade. The design variable was chosen as
sectional twist-angle distribution along the blade span, for
which an optimization procedure has been devised. The
blade sectional foil profiles were kept the same as NERL
phase VI. The vector lines of the BVF σp and skin-friction
τ on the blade surface before and after optimization are
shown in Fig. 18. The τ -lines signify the flow directions

Figure 17: The performance comparison of the original
and the BVF-optimized rotor blade [26]: (a) pressure
ratio; (b) adiabatic efficiency.

adjacent to the wall, and as before three-dimensional
boundary-layer separation was identified at the blade
surface region where the σp-lines become nearly aligned
to the τ -lines. On the prototype blade this happens
at about 45% to 90% spanwise locations, which is
significantly postponed on the optimized configuration.
Correspondingly, Fig. 19(a) shows the improvement of
the spanwise distribution of sectional axial-moment due
to the great reduction of the boundary-layer separation
zone, at wing speed W = 10m/s. In fact, this
improvement occurs in a wide wind-speed range W =
10m/s to 25m/s, during which the total axial moment
(shaft torque, or the power generation) is increased by
13.1% to 36.2%, as shown in Fig.19(b).

Figure 18: Distribution of friction lines (dotted) and BVF
lines (solid) on the blade’s suction side under the wind
speed W = 10m/s: (a) the original blade (NREL phase
VI); (b) the optimized blade [36].
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Figure 19: Comparison of the blade’s aerodynamic
performances: (a) Spanwise distributions of
axial-moment coefficient at W = 10m/s; (b) Total
axial moments (shaft torques) versus wing speed [36].

5.5 Instability and Optimal Design of
Francis Turbine

Operational stability is always a key performance
requirement for various fluid machines. Vortex instability
and breakdown is one of the major causes for a fluid
machine with vortical flow to lose its operational stability.
The vortex breakdown on a delta wing of moderate sweep
angle at large angles of attack, as we encountered in
§ 5.1, is a familiar example. Another typical example
of similar kind in turbo flows is the severe low-frequency
pressure fluctuation of Francis water turbine at off-design
condition. Both model tests and numerical simulations
suggested that this fluctuation is associated with some
unsteady “vortex ropes” in the draft tube. Although
a few engineering methods such as air admission at the
draft-tube inlet had been devised to somewhat alleviate
the pressure fluctuations, more rational strategies based
on firm physical understanding are still highly desired.

Reference [39] noticed the remarkable similarity
between the vortex rope in a draft tube and vortex
breakdown on a delta wing (Fig. 20), and clarified the
underlying physics for the first time. By tracing the

axial development of the mean flow’s local absolute
instability/convective instability (AI/CI) behavior6 along
the draft-tube inlet cone, these authors found:

— under part-load condition, the swirling flow at the
Francis turbine’s draft tube inlet is absolutely unstable
and dominated by helical modes, which leads to spiral
vortex ropes (Fig. 20a) and severe pressure fluctuation;

— under higher part-load condition, the swirling flow is
also absolutely unstable but dominated by axisymmetric
mode, leading to a bubble-type vortex rope (Fig. 20b)
with small-amplitude pressure fluctuation; and

— under full-load condition, the flow has only a very
weak swirl and is convectively unstable with almost no
pressure fluctuation.

Figure 20: The spiral and bubble types of the vortex
breakdown in a model draft tube.

Reference [41] has further identified that the absolute
instability of the draft-tube flow was caused crucially
by the reversed axial flow at the draft-tube inlet under
part-load conditions. Thus, suppressing the reversed
axial flow should be the key to reduce severe pressure
fluctuations. They illustrated how this strategy could
work by a numerical simulation of water injection at the
draft-tube inlet. One result is shown in Fig.21, indicating
that a jet with mass flux 10.2% of the draft-tube flow can
effectively eliminate the pressure fluctuations.

External injection, however, needs extra power
consumption and may not be practically feasible. Because
the draft-tube inlet is the runner exit, a more radical
strategy should be to redesign the runner blades so that
the normal operating envelope can be maximally enlarged
and reversed flow phenomenon be minimized. In other
words, suppressing pressure fluctuation can be made in
consistency with enhancing turbine’s key performance
(efficiency). This concept has been confirmed by [42]
based on the axial component of (38) which he
re-derived and is equivalent to (40).7 Reference [42]

6For relevant knowledge of vortex instability and breakdown see,
e.g. [40] and [7].

7The rotating runner surface has a centrifugal acceleration that
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Figure 21: Pressure fluctuations on draft-tube wall under
water-injection control: (a) and (b) are the pressure
fluctuations on six check points, respectively; (c) shows
the check points’ locations [41].

used this formula as the objective function in his
optimization procedure. As a result, since the optimized
runner enhances the mean velocity at its exit, the
reversed flow is considerably alleviated, and hence the
pressure-fluctuation amplitude is remarkably reduced by
60%. The rotor blades geometry and runner efficiency
before and after optimization are compared in Figs. 22(a)

causes a σa, which however has no contribution to axial moment,
namely the surface integral of x2σaz always vanishes.

and (b), with the peak efficiency being increased from
93.6% to 94.5%.

Figure 22: Comparison of (a) the runner blade shapes
and (b) efficiencies of a Francis turbine before and after
optimal design of the runner [42].

6 Concluding Remarks

1. The complexity of real flows at large Reynolds
numbers lies at the coexistence and coupling of multiple
fundamental processes in fluid dynamics and irreversible
thermodynamics. Each process is measured by one or
a few characteristic variable, of which the governing
equation is nonlinear. The coupling of different
processes occurs both in the interior of the flow field
and on boundaries. The Helmholtz decomposition
and its modern extension/sharpening permits examining
separately the special feature and dominant structures
of every process and its coupling with others, which
forms a very useful theoretical framework in complex
flow diagnosis. The more complex is the flow, the more
strongly it is desired to decompose the flow field to the
most elementary building block, and hence the more one
would need to rely on such a theory. This basic idea is
demonstrated in this article by considering the vorticity
dynamics in complex flow diagnosis and management.
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2. It is proposed that, in the interior of a vortical
flow the best flow-structure indicator is the Lamb vector
l = ω × u along with its curl and divergence; while
at the flow boundary the best process indicator is the
pressure-caused boundary vorticity flux σp along with
the boundary vorticity ωb or the on-wall shear stress
τ = µωb × n .

3. The derivative-moment transformation (DMT) is
one of the effective approaches to exhibit explicitly the
role of local flow structures in global flow performance.
A series of DMT-based total force/moment formulas are
given as illustration, which permit pinpointing various
key vortical structures and local processes by identifying
the Lamb vector and the pressure-caused BVF in relevant
integrands, ranging from axial vortices to near-wall free
shear layers, boundary-layer separation, boundary layers,
and eventually the vorticity creation from the wall. The
identification of key indicators of local flow structures
and processes, as well as their appearance in global
flow performance leads to a local-dynamics flow diagnosis
theory.

4. While examples from different application fields are
given to illustrate the ability of local dynamics theory
in the diagnoses and managements of complex external
and internal flows, the theory and applications are still
in continuous progress. New useful structure-interaction
indicators or new aspects of our proposed indicators could
be identified, and their roles in various classes of global
performances could be further quantified. In particular,
much more has to be done for high-speed complex flow
diagnosis and management, which should be a major field
of future exploration. The development at fundamental
level and applications in engineering practice have to be
mutually motivated.
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[18] von Kármán, T. and Burgers, J.M., “General
aerodynamic theory – perfect fluids”, In Durand,
W.F. ed., “Aerodynamic Theory”, Vol. II, Springer,
1935; Dover, 1963.

[19] Lighthill, M. J. “Physical interpretation of the
mathematical theory of wave generation by wind”,
J. Fluid Mech., Vol. 14, pp. 385–398, 1962.

[20] Saffman, P.G., “Vortex Dynamics”, Cambridge
University Press, 1992.

[21] Yang, Y.T., Su, W.D. and Wu, J.Z., “Helical
wave decomposition and applications to channel
turbulence with streamwise rotation”, J. Fluid
Mech., In press, 2010.

[22] Tong, B.G., Yin, X.Y. and Zhu, K.Q., “Theory of
Vortex Motion”, 2nd Ed., The University of Science
and Technology of China Press, 2009. In Chinese.

[23] Hamman, C.W., Klewicki, J.C. and Kirby, R.M.,
“On the Lamb vector divergence in Navier-Stokes
flows”, J. Fluid Mech., Vol. 610, pp. 261–284, 2008.

[24] Chen, L.W., Xu, C.Y. and Lu, X.Y., “Numerical
investigation of the compressible flow past an
aerofoil”, J. Fluid Mech., Vol. 643, pp. 97–126, 2010.

[25] Wu, J.Z., Wu, H. and Li, Q.S., “Boundary vorticity
flux and engineering flow management”, Adv. Appl.
Math. Mech., Vol. 1, pp. 353–366, 2009.

[26] Li, Q.S., Wu, H., Guo, M. and Wu, J.Z., “Vorticity
dynamics in axial compressor flow diagnosis and
design - part II: Methodology and application of
boundary vorticity flux”, J. Fluids Eng., Vol. 132,
No.011102, 2010.

[27] Yang, Y.T., Zhang, R.K., An, Y.R. and Wu, J.Z.,
“Steady vortex force theory and slender-wing flow
diagnosis”, Acta Mech. Sinica, Vol. 23, pp. 609–619,
2007.

[28] Smith, F.T., “On the high reynolds number theory
of laminar flows”, IMA J. Appl. Math., Vol. 28,
Number 3, pp. 207–281, 1982.

[29] Wu, J.Z., Lu, X.Y. and Zhuang, L.X., “Integral force
acting on a body due to local flow structures”. J.
Fluid Mech., Vol. 576, pp. 265–286, 2007.

[30] Wu, J.C., “Elements of Vorticity Aerodynamics”.
Tsinghua University Press, Beijing, China, 2005.

[31] Burgers, J.M., “On the resistance of fluids
and vortex motion”. Koninklijke Nederlandsche
Akademie van Wetenschappen Proceedings, Vol. 23,
Number 1, pp. 774–782, 1921.

[32] Wu, J.C., “Theory for aerodynamic force and
moment in viscous flows”. AIAA J., Vol. 19, pp.
432–441, 1981.

[33] Lighthill, M.J., “Fundamentals concerning wave
loading on offshore structures.” J. Fluid Mech.,
Vol. 173, pp. 667–681, 1986.

[34] Sun, M. & Wu, J. H., “Large aerodynamic force
generation in a sweeping wing at low Reynolds
numbers.” Acta Mech. Sinica, Vol. 20, pp. 24-31.

[35] Xu, C.Y., Chen, L.W. and Lu, X.Y., “Large-eddy
simulation of the compressible flow past a wavy
cylinder”. J. Fluid Mech., 2010. Accepted.

[36] Zhang, R.K., “Diagnosis, optimization and control
in complex flows based on local-dynamics theory”.
Ph.D. dissertation, Peking University, Beijing,
China, 2010. In Chinese.

[37] Yang, Y.T., Wu, H., Li, Q.S., Zhou, S. and Wu,
J.Z., “Vorticity dynamics in axial compressor flow
diagnosis and design”, J. Fluids Eng., Vol. 130,
No.041102, 2008.

[38] Li, Q.S. and Guo, M., “Diagnosis and design of
a low speed compressor based on local dynamics”,
Adcances in Natural Science, Vol. 15, Number 2, pp.
221–228, 2005. In Chinese.

[39] Zhang, R.K., Cai, Q.D. and Wu, J.Z., “The physical
origin of severe low-frequency pressure fluctuations
in giant Francis turbines”, Modern Physics Letters
B, Vol. 19, Number 28&29, pp. 1527–1530, 2005.

[40] Yin, X.Y. and Sun, D.J., “Vortex Stability”,
National Defence Industrial Press, Beijing, China,
2003. In Chinese.

[41] Zhang, R.K., Mao, F., Wu, J.Z., Chen, S.Y., Wu,
Y.L. and Liu, S.H., “Characteristics and control of
the draf-tube flow in part-load Francis turbine”, J.
Fluids Eng., Vol. 131, No.021101, 2009.

[42] Wu, X.J., “The numerical simulation of the
usteady flow of the Fransic turbine and vortical flow
diagnosis”, Ph.D. dissertation, Tsinghua University,
Beijing, China, 2009. In Chinese.

22


