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Abstract Experiments on the effect of surface roughness of 
small height on the growth of Tollmien-Schlichting (T-S) waves 
are conducted. Two kinds of distributed roughness are considered.  
One is sinusoidal roughness and the other is rectangular 
roughness distributed in the streamwise direction. The results 
clearly demonstrate the destabilizing effect of two-dimensional 
distributed roughness in Blasius boundary layer and plane 
Poiseuille flow. It is also shown that when the roughness 
elements are distributed at an angle to the two-dimensional T-S 
waves, the destabilizing effect is markedly weakened compared 
with the two-dimensional distributed roughness.  

 
Keywords Instability, Transition, Surface roughness, 
Tollmien-Schlichting waves 
 

1. Introduction  
It is known experimentally that surface roughness 

generally promotes laminar-turbulent transition in 
boundary layers. In past literatures(1,2), the critical 
roughness height above which roughness can affect on the 
transition of Blasius boundary layer is often cited to be 25 
in terms of the roughness Reynolds number Rek = Ukk/ν, 
where k is the roughness height, Uk is the Blasius flow 
velocity at the height k and ν is the kinematic viscosity.  
This criterion comes from extension of the hydraulic 
smooth concept in which the friction drag of turbulent flow 
departs from that for the smooth wall for u*k/ν >5 where u* 
is the friction velocity.  However, the critical roughness 
condition for laminar-turbulent transition has not yet been 
clarified thus far, in particular, from stability and 
receptivity viewpoints. 

If roughness is much larger than the critical height, each 
roughness element can lead to by-pass transition skipping 
the growth stage of Tollmien-Schlichting (T-S) waves 
through strong inflectional instability mechanism directly 
caused by roughness elements.  When the roughness height 
is so small that the roughness little modifies the boundary 
layer profiles, on the other hand, its role in the transition 
process has not fully been understood except for isolated 
roughness. Isolated roughness of small height generally 
plays a role in the receptivity process(3) where any 
departure from surface smoothness can excite T-S waves 
in cooperation with free-stream disturbances and acoustic 

noise. For three-dimensional boundary layers, an isolated, 
three-dimensional roughness element itself works as an 
origin of stationary cross-flow instability mode developing 
into the so-called cross-flow vortices even when its height 
is extremely small.  

In the case of distributed roughness, Corke et al(4) 
compared amplification of T-S waves in zero-pressure 
gradient boundary layers on the smooth wall and on the 
rough wall under a natural disturbance condition 
experimentally. They used sand-paper roughness as the 
distributed roughness whose Reynolds number Rk was 
about 130.  T-S waves grew more rapidly on the rough 
wall than on the smooth wall in their experiment.  They 
found no appreciable difference in the velocity profile 
across the boundary layer between both the cases. 
Therefore they inferred that the faster growth of T-S waves 
on the rough wall was not attributed to a destabilizing 
effect of roughness such as an inflectional instability 
immediately behind an isolated roughness, and pointed out 
a possibility of continual excitation of T-S waves on the 
rough wall by freestream turbulence. However, it could not 
be clarified whether the faster growth of T-S waves 
observed was caused by increase of receptivity due to 
roughness or destabilization effect of roughness or both.  
The problem of the effects of distributed roughness on the 
stability and transition still remains open even now. 

Recently our knowledge on the effect of distributed 
roughness has been improved in part.  Floryan(5) analyzed 
the stability of two-dimensional channel flow with two-
dimensional distributed roughness of simple geometries by 
considering its spectral representation and showed that the 
two-dimensional distributed roughness of very small 
height whose Rek was much less than 25 destabilized the 
flow to T-S waves. His theoretical prediction was verified 
experimentally by Asai and Floryan(6).  In their experiment, 
surface corrugation with amplitude of 4% of the channel 
half depth reduced the critical Reynolds number 5772 for 
the linear instability of plane Poiseuille flow down to about 
4000.  

In this paper, we explain our recent experiments on the 
effect of distributed surface roughness of small height on 
the T-S instability, in which two kinds of roughness 
geometry were considered.  One is a wavy wall with small 
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amplitude (height) less than the critical roughness height 
(Rek <12).  The other consists of rectangular roughness 
elements distributed in the streamwise direction.  In the 
latter case, our particular focus was paid on the coupling 
between two-dimensional T-S waves and oblique 
roughness elements to clarify how critically the 
destabilizing effect may depend on the oblique angle of 
roughness elements.  

 

2. Surface corrugation 
The experiment was conducted in a low turbulence wind 

tunnel of open jet type, with a test section of 400×400 mm2 
in cross section.  Two Plexiglas sidewalls maintain the 
two-dimensionality of the main stream and the upper area 
is covered with 24-mesh gauze instead of rigid wall to 
realize the boundary layer with zero pressure gradient 
without developing a mixing layer from the tunnel exit.  A 
boundary-layer plate of 1195mm long was set parallel to 
the oncoming uniform flow in the test section.  As 
illustrated in Fig. 1, the boundary-layer plate consists of a 
brass plate of 5mm thick and 300mm long with a sharp 
leading edge, followed by a Plexiglas plate of 20mm thick 
and 895mm long.  The Plexiglas plate can be replaced with 
a plate with surface corrugation or a smooth surface plate.  
As for the coordinate system, x is the streamwise distance 
measured from the leading edge, y the normal-to-wall 
distance and z the spanwise distance.   

The surface corrugation whose shape is given as yw= 
Asin(αwx) where the wavelength 2π/αw is 32mm and the 
amplitude A is 0.21mm.  The corrugation wavelength is the 
order of T-S wavelengths in the present experiment. The 
surface corrugation (wavy wall) ranges from x=320mm to 
x=1024mm, a distance of 22 wavelengths.  

T-S waves of a single frequency were excited by means 
of vibrating ribbon technique.  The vibrating ribbon was 
stretched in the spanwise direction at a height of 1mm at a 
streamwise location 190mm downstream from the leading 
edge.  Twelve pieces of Neodymium magnets were 
installed on the opposite side of the boundary layer plate to 
generate a magnetic field perpendicular to the ribbon.  The 
input current to the ribbon was supplied with a signal 
generator through a power amplifier.  A constant-
temperature hot-wire anemometer was used to measure 
time-mean and fluctuating streamwise velocity compo-
nents, denoted by U and u, respectively.   

Detailed experiments were conducted at the free-stream 
velocity U∞ = 3m/s and 6m/s.  Free-stream turbulence was 
less than 0.1% of U∞ at the inlet of the test section.  The 
streamwise variation of freestream velocity was less than 
0.5%, which guaranteed the laminar boundary layer under 
zero pressure gradient.  The Reynolds numbers based on 
the displacement thickness R* (=U∞δ/*ν) were 320 and 460 
at x=190mm (the vibrating ribbon location) for U∞ = 3m/s 
and 6m/s, respectively.  The ratio of the corrugation 
amplitude to the displacement thickness A/δ* changed from 
9.3% to 5.5% and from 13.2% to 7.8% over the distance 
x=320~920mm at U∞ = 3m/s and at U∞ = 6m/s, 
respectively. 

Fig. 2 displays the y-distributions of streamwise velocity 
U at x=346mm, 600mm and 856mm in the boundary layer 
on the smooth wall at U∞ = 6m/s by comparing with the 
Blasius flow profile.  The velocity distributions coincide 
with the Blasius profile almost completely.  Note that the 
sharp leading edge allows the Blasius flow to develop 
immediately downstream from the leading edge.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the vibrating ribbon was driven at a single 

frequency f, a two-dimensional T-S wave was excited, as 
verified in Fig. 3 which compares the y-distributions of 
r.m.s. value of the streamwise velocity fluctuation u (the 
forcing frequency component were singled out) with the 

Fig. 3. Amplitude distributions of T-S wave excited 
at F=1.5×10-4 in flat-plate boundary layer at U∞= 
6m/s. ○ x=310mm (xU∞/ν=1.18×105), □ x= 728mm 
(xU∞/ν=2.76×105). — Eigenmode of Orr-
Sommerfeld equation. 
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Fig. 2. The y-distributions of U in flat-plate boundary 
layer at U∞=6m/s. ○ x=344mm (xU∞/ν=1.31×105), □ 
x=600mm (xU∞/ν=2.28×105), △ x=856mm (xU∞/ν= 
3.25×105).  — Blaius flow 
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distribution of T-S wave calculated from the Orr-
Sommerfeld equation.   

Figs. 4(a) and (b) compare the streamwise development 
of T-S waves excited with non-dimensional frequency F 
(=2πfν/U∞

2) = 1.5×10-4 and 1.9×10-4 respectively between 
the cases of smooth wall and corrugated wall at U∞= 6m/s 
in terms of the streamwise variation of the maximum r.m.s 
amplitude u’

m.  The comparisons show that the surface 
corrugation surely enhanced the amplification of T-S wave 
even when the corrugation amplitude is only of the order 
of 0.1δ*.  We examined the disturbance development for 
various frequencies at U∞= 3m/s and 6m/s and plotted the 
neutral stability locations where the disturbance ceased to 
grow (or decay) on the neutral stability diagram of Blasius 
flow obtained by the parallel flow theory (the Orr-
Sommerfeld equation) and the non-parallel stability 
theory(7) in Fig. 5.  The surface corrugation causes the 
lower branch of the neutral curve moves towards smaller 
R* and the upper branch towards higher R*.  Furthermore, 
we notice that the influence of surface corrugation is more 
pronounced for higher frequency T-S waves than lower 
frequency waves.  This is attributed to the fact that for 
higher frequencies, the T-S wave passes across the lower 
and upper branches earlier and thus the corrugation 
amplitude relative to the displacement thickness A/δ* is 
larger at the neutral locations than that for the case of 
lower frequencies.  It is also important to point out that the 
development of T-S wave is decisively dominated by the 
behavior of the viscous Stokes layer very close to the wall.  
The Stokes-layer thickness is of the order of (ν /ω)1/2 
where ω=2πf and thus T-S waves with higher frequency 
can be affected by the surface corrugation more strongly. 

 
3. 2D and oblique roughness elements 

This experiment was conducted in plane channel flow by 
using a rectangular wind channel of aspect ratio 26.7 whose 
width, height and length were 400mm, 15mm (= 2h) and 
6300mm, respectively.  The channel facility is the same as 
that used in the stability experiment by Asai and Floryan(6) 
except extension of the streamwise length by 300mm.  The 
laminar flow could be maintained up to the Reynolds 
number R = 6500.  Here the Reynolds number is defined on 
the center-line velocity Uc and the channel half-height h (= 
7.5 mm). 

The schematic diagram of the test section is illustrated in 
Fig. 6.  The experiment was conducted at R=5000, which 
is subcritical for the linear instability in plane Poiseuille 
flow between two parallel smooth walls.  The background 
turbulence was about 0.1% of Uc.  Two-dimensional wave 
disturbances were excited through two transverse slots 
300mm long and 3mm wide in the lower wall, located 
about 700h downstream from the channel inlet. The slots 
were covered with a thin aluminum plate in which many 
small holes of 0.4mm diameter were drilled spaced 0.6mm 
apart in the streamwise and spanwise directions.  Each slot 
was connected with a loudspeaker through a specially 

designed converging vane.  Two loudspeakers were driven 
at a single frequency by using sine-wave generator through  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a power amplifier.  The input signals to the two 
loudspeakers had an equal intensity but were 180° out of 
phase so that the suction and blowing occurring 
simultaneously at each instant of time did not affect the 
mass flow rate through the channel at all and therefore 
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Fig. 5. Comparison of neutral stability locations for 
smooth wall (□, ○) and corrugated wall (■, ●) at 
U∞=6m/s (○, ●) and U∞=3m/s (□, ■). Solid curve; 
parallel flow theory. Broken curve; non-parallel 
theory (7). 

Fig. 4. Streamwise development of T-S waves at 
U∞=6m/s.  (a) F=1.5×10-4, (b) F=1.9×10-4.  ○; 
Smooth wall.  ●; Corrugated wall. 
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cancelled acoustic monopole disturbances.  In the (x, y, z) 
coordinate system, x is the streamwise distance measured 
from the location of downstream slot, y the normal-to-the-
wall distance and z the spanwise distance.  Fig. 7 compares 
the amplitude distribution of u excited by the disturbance 
generator mentioned above with the T-S wave calculated 
by the linear stability theory, showing that the T-S wave 
could be successfully introduced into the flow. 
Rectangular roughness elements were glued in equal 
interval on the lower wall (y/h= -1), some distance 
downstream from the disturbance generator.  The height of 
each roughness element is 0.3mm, i.e., 0.04h, and the 
width is 4.7mm (= 0.67h).  Here it is noted that the channel 
walls were not completely smooth but possessed inevitable 
small deformation or irregularity. The magnitude of such 
surface irregularity was at most 0.02mm, which is one 
order of magnitude less than that of the present roughness 
elements.  Two kinds of roughness arrangement were 
adopted here.  One is two-dimensional arrangement, where 
roughness elements were glued at the right angle to the 
basic flow, as illustrated in Fig. 8(a).  The other is of 
oblique roughness, as illustrated in Fig. 8(b).  As for the 
two-dimensional roughness, the streamwise spacing of 
roughness elements L was 9.4mm, twice the roughness 
width.  Therefore the nondimensional streamwise 
wavenumber αw=2πh/L is 5.0.  For the experiment on the 
oblique roughness, each roughness element was glued with 
an oblique angle of 30º to the z-axis.  The spacing in the 
direction normal to each roughness element was 9.4mm, 
the same as that in the two-dimensional case. The 
roughness region started at x/h=28 and 14 for the cases of 
2D roughness and oblique roughness, respectively. 

Floryan7) showed theoretically that two-dimensional 
rectangular roughness could also destabilize the flow for 
T-S waves similar to the case of sinusoidal roughness 
geometry.  In the present experiment, our particular 
attention is focused on the dependency of the streamwise 
growth of T-S waves on the oblique angle of roughness 
elements.  Fig. 9 compares the streamwise development of 
T-S waves excited at a non-dimensional frequency ω 
(=2πfh/Uc) = 0.33 for the flows with and without 
roughness elements.  The two-dimensional roughness 
elements surely destabilize the flow even for the roughness 
height is only 4% of the channel half height which 
corresponds to the roughness Reynolds number Rk of 16.  
When the roughness elements were slightly oblique to the 
traveling (T-S) wave, the destabilizing effect of roughness 
elements is weakened compared with the two-dimensional 
arrangement of roughness elements.   
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 shows such a dependency of the instability on 
the arrangement of roughness elements by comparing with 
the growth rates of T-S waves against the non-dimensional  
frequency (ωh/Uc) for the three cases, i.e., smooth wall, 
two-dimensional roughness and oblique roughness. The 
growth rates for the case of oblique roughness arrangement 
are not so different from those for the smooth wall case.  
Thus, the effect of distributed roughness is rather sensitive 
to the arrangement of roughness elements. 
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Fig. 9. Development of T-S waves (ωh/Uc = 0.33) 
with and without roughness at R=5000.  ●; Smooth 
wall. ○; 2D roughness. △; oblique roughness. 
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Fig. 7. Amplitude distribution of T-S wave excited at 
ωh/Uc=0.27 at x/h=100 in the smooth wall channel at 
R=5000. ○ Experiment, — linear stability theory. 

Fig. 8.Illustrations of 2D and oblique roughness 
arrangements.  
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Fig. 6. Schematic diagram of test section. 
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4. Concluding remarks 
In this paper, our recent experimental results on the 

effect of distributed roughness on the Tollmien-Schlichting 
instability, conducted in Blasius boundary layer and plane 
Poiseuille flow, were presented.  The experiment clearly 
showed the destabilizing effect of two-dimensional surface 
corrugation and distributed rectangular roughness.  It was 
also found that when the roughness elements were 
distributed at a small angle to the two-dimensional T-S 
waves, the destabilizing effect was markedly weakened 
compared with two-dimensional roughness distribution.  
Indeed, when the roughness elements were arranged at an 
oblique angle of 30º, the growth rates of T-S waves tended 
to those in plane Poiseuille flow without roughness.  Thus, 
the effect of distributed roughness highly depends on the 
arrangement of roughness elements.  
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