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Abstract 
Thermoacoustic instability has traditionally been investigated by 
linearizing the equations of combustion-acoustic interaction and 
testing for unstable eigenvalues of the linearized problem. 
However, it was observed that often the results of linear stability 
analysis agree poorly with experiments. Nevertheless, linear 
effects play a central role in combustion instability. The 
consequence of non-normality in the occurrence of subcritical 
transition to instability is illustrated in the context of a horizontal 
Rijke tube. It is shown that the coupled thermoacoustic system is 
non-normal as well as nonlinear. Non-normality can cause 
algebraic growth of oscillations for a short time even though all 
the eigenvectors of the system could be decaying exponentially 
with time. This feature of non-normality combined with the effect 
of nonlinearity causes the occurrence of subcritical transition to 
instability from initial states that have small energy. Measures to 
quantify transient growth are also discussed. Examples discussed 
include thermoacoustic instabilities in ducted premixed and 
diffusion flames and solid rocket motor. 
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Thermoacoustic instability, non-normality, nonlinearity, 
subcritical bifurcation, triggering 

1. Introduction 
The occurrence of thermoacoustic instabilities, also known 
as combustion instabilities has been a plaguing problem in 
the development of combustors for rockets, jet engines and 
power generating gas turbines [1]. Predicting and 
controlling thermoacoustic instability requires an 
understanding of the interactions between the combustion 
process and the acoustic wave. 

Thermoacoustic instability arises primarily from an 
interaction of acoustic waves and unsteady heat release. 
The occurrence of thermoacoustic instability depends upon 
the phase between heat release rate fluctuations and 
pressure fluctuations at the flame. According to Rayleigh 
[2], amplification of the pressure oscillations by the heat 
addition process will take place if the maximum and 
minimum of the heat addition occur during the 
compression and rarefaction phases of the pressure 
oscillation, respectively. In contrast, the pressure 
oscillations will be attenuated if the maximum and 
minimum of the heat addition occur during the rarefaction 

and compression phases of the pressure oscillation, 
respectively. 

When pulsations start spontaneously, the system is said to 
be linearly unstable; i.e., the system is unstable with 
respect to any small amplitude disturbance that may be 
present in the combustor. This scenario has been 
successfully investigated for various thermoacoustic 
systems by using a linear stability analysis that model the 
system as a network model. In a network model, each 
element is modeled using a linear transfer function [3, 4]. 
The stability of the system can then be determined easily 
by examining the eigenvalues of the system. 

It is also possible that a linearly stable combustor (i.e., one 
that does not pulse spontaneously) could be “triggered” 
into pulsating operation by the introduction of a finite 
amplitude disturbance such as might be caused by a spark 
plug ignition or a small explosion. Such a system will be 
stable with respect to all disturbances whose amplitudes 
are below a certain threshold value, but will transition into 
pulsating operation when the amplitude of the disturbance 
exceeds this threshold value. Such subcritical bifurcations 
cannot be explained by using classical linear stability 
analysis. 

Although much work has been done over the last 50 years, 
it is mostly in the framework of classical linear stability 
analysis. A comprehensive prediction of the conditions for 
the onset of instabilities is a difficult task, which is not yet 
mastered. In particular, predicting the conditions under 
which finite-amplitude disturbances destabilize a linearly 
stable system and predicting the limit-cycle amplitude of 
the instability remain a key challenge, as little is known, 
even in a qualitative sense, about the key parameters 
controlling nonlinear flame dynamics, even in simple 
laminar flames [5]. 

In order to predict the occurrence of subcritical 
bifurcations and to calculate the limit cycle amplitude, a 
nonlinear theory of thermoacoustic oscillations is 
necessary. The nonlinear response of the oscillatory heat 
release to velocity fluctuations has been investigated by a 
number of authors in the context of various burners that 
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show thermoacoustic instabilities. Here, we will review the 
literature on nonlinear effects in a Rijke tube, which we 
will be examining in Section 3 in some detail. Nonlinear 
effects in Rijke tube have drawn considerable attention in 
the recent years. A Rijke tube is a relatively simple system: 
it is a duct which is open at both ends and has a heat 
source (often electrically heated wires) placed near quarter 
length from the bottom (if located vertically). Heckl [6] 
studied the nonlinear effects leading to limit cycles, both 
experimentally and theoretically for the case of a Rijke 
tube. She showed that the important nonlinear effects are 
the reduction of the rate of heat transfer when the velocity 
amplitudes are of the same order as the mean velocity and 
increased losses at the ends of the tube at very high 
amplitudes. Hantschk and Vortmeyer [7] showed that the 
limit-cycle amplitude in a Rijke tube is determined by 
nonlinearities in the heat flux from the heating element to 
the flow. Yoon et al. [8] proposed a nonlinear model of a 
generalized Rijke tube. Their model for the oscillatory heat 
release rate was not derived from physical principles. They 
derived both closed form and numerical solutions for the 
acoustic field by an approximate modal analysis using a 
two-mode formulation. The two-mode nonlinear model is 
capable of predicting the growth of oscillations in an 
initially decaying system. Yoon et al. [8] refers to this as 
the bootstrapping effect, which they say, characterizes 
nonlinear velocity sensitive combustion response in rocket 
motors. However, they neglected nonlinear acoustics in 
their model. In order to explain the nonlinear effects of a 
Rijke tube, Matveev [9, 10] constructed a simple theory by 
using an energy approach. The equilibrium states of the 
system are found by balancing thermoacoustic energy 
input and acoustic losses. His work reaffirmed that the 
nonlinearity of the unsteady heat transfer is a dominant 
factor in determining the limit-cycle amplitude. Further, 
Matveev & Culick [11] demonstrated the necessity of 
accurately modeling the effects of temperature gradient on 
the mode shapes to obtain accurate results for stability. 

Although considerable research has been performed on the 
nonlinear nature of thermoacoustic oscillations, their non-
normal nature is an aspect that has not received any 
attention until recently. Non-normality can lead to 
transient growth of oscillations in a system even when the 
eigenvalues indicate linear stability. However, the transient 
growth will be followed by an asymptotic decay for the 
linearized system. There could be situations where the 
short term growth of fluctuations can lead to significant 
amplitudes, where nonlinear effects could cause ‘nonlinear 
driving’, causing the linearly stable system to evolve to a 
limit cycle. 

The role of non-normality in thermoacoustic oscillations 
has been shown in the context of ducted diffusion flames 
[12], Rijke tube [13-15], premixed flames [16]  and vortex 
combustors [17] using a Galerkin type analysis. Nicoud et 
al. [18] has shown that the eigenvectors of a 
thermoacoustic system are non-orthogonal in the presence 
of heat release, or, in the presence of general complex 

impedance boundary conditions. Kedia et al. [19] showed 
that ignoring the linear coupling of the modes will result in 
significant changes in the linear and nonlinear system 
dynamics. Mariappan and Sujith [20] investigated non-
normality in the context of pulsed instabilities in solid 
rocket motors. Kulkarni et al. [21] demonstrated that non-
normality and transient growth can lead to the failure of 
traditional controllers that are designed based on classical 
linear stability analysis. 

Thus there are two distinct aspects of combustion acoustic 
interactions: 1) non-orthogonality of the eigenmodes of the 
linearized system and 2) nonlinearities. The objective of 
this paper is to highlight these aspects, particularly in the 
context of subcritical bifurcations. The rest of this paper is 
organized as follows. In Section 2, the characteristics of a 
non-normal operator and its consequences are discussed in 
the context of thermoacoustic instabilities. Non-normality 
and its consequences in subcritical transition to instability 
are explained in Section 3, using a toy model of a 
horizontal Rijke tube. Non-normality in ducted premixed 
flame and diffusion flames are explained in Section 4 and 
5 respectively, using simple models drawn from the 
literature. Section 5 discusses non-normality in the context 
of pulsed instabilities in solid rocket motors. The outlook 
for the future is discussed in Section 6. 

2. Non-normality and Transient Growth in 
Thermoacoustic Oscillations 

Classical linear stability analysis is a standard tool for 
studying the stability of oscillations in combustors [1, 22, 
23]. This involves examining the evolution of small 
perturbations by linearizing the dynamical system about the 
unperturbed state and examining the eigenvalues of the 
linearized system. If the real parts of all the eigenvalues are 
negative, then the system is said to be linearly stable. If at 
least one of the eigenvalues has a positive real part, the 
system is linearly unstable with an exponential growth in 
the amplitude of oscillations. In other words, linear stability 
analysis gives conditions for asymptotic stability. However, 
if a linearly stable system is non-normal, the small 
perturbations may exhibit large transient energy growth 
before their eventual decay. 
 

This property is illustrated in Figure 1a, where x1 and x2 
represent the directions of the eigenvectors and R vector is 
a linear combination of the eigenvectors with components 
r1 and r2 along x1 and x2 respectively. As illustrated in 
Figure 1a, a normal system has orthogonal eigenvectors. If 
the amplitudes of these individual eigenvectors decay, then 
R decreases monotonically. On the contrary, Figure 1b 
shows that for a non-normal system, R may increase even 
when the amplitudes of individual eigenvectors, which are 
non-orthogonal, decay. During such transient growth, 
nonlinear effects may get triggered resulting in the growth 
and eventual saturation of the perturbations, thereby 
changing the asymptotic stability of the system as 
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illustrated in Figure 2. Reddy and Henningson [24] provide 
a comprehensive analysis on non-normal transient energy 
growth in the context of hydrodynamic instabilities in a 
viscous channel flow. A similar scenario arises in the case 
of thermoacoustic oscillations as well. 

 
Figure 1: (a) shows decay of a normal system, (b) shows 
transient growth of a non-normal system. The initial state is 
R(0) = r1(0)x1 + r2(0)x2, and the final state R(t) = r1(t)x1 + 
r2(t)x2. The dashed lines denote the vectors at time t = 0 and 
the solid lines denote the vector at some time t. 

 

Neglecting the effect of mean flow on wave propagation, 
the acoustic equations in the presence of a heat source can 
be written as [25]: 

0u pM
t x

γ
′ ′∂ ∂
+ =

∂ ∂
                      (1) 

2
0 0 0

( 1) aLp u QM
t x c c

γ γ γ
ρ

′ ′ ′∂ ∂
+ = −

∂ ∂

&
                    (2) 

The assumptions in deriving these equations and the details 
of non-dimensionalisation are given in Section 3.1. 

 
Figure 2: Schematic of linear and nonlinear evolution of 
acoustic energy obtained from linear and nonlinear 
simulations ( )2 2 21/ 2 /( ) 1/ 2p M uγ′ ′+ ; reproduced from 

reference [14], with permission from Cambridge University 
Press. 

The heat release rate in the above equation is calculated 
from a model for the heat source. The linearized oscillatory 
heat release rate, can be written as Q′ =&  

( , ) ( , )i iR x Mu S x pε γ µ′ ′+ , where R and S can be treated 
as a continuous function of x (which could even be sharply 
peaked at the flame location as in the case of a compact heat 
source),  and i iε µ  are parameters which affect heat release 
rate. The heat release rate could have an explicit dependence 

on time as well. Equations (1) & (2) can be recast in the 
matrix form as: 

3 3
0 0 0 0

0
0( 1) ( 1)a a

Mu Mu
x

RL SLt
p px c c

γ γ

γ γ γ
ρ ρ

′ ′∂⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥∂∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ =

− −∂∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥′ ′∂⎣ ⎦ ⎣ ⎦⎣ ⎦

   (3) 

The matrix in Eq. (3) is a matrix of operators. The above 
operator does not commute with its adjoint for non-zero R 
and S. (The adjoint of a real matrix is simply the transpose 
of the matrix. The adjoint of a differential operator is its 
negative of its transpose.) Therefore, it is clear that 
thermoacoustic interactions are non-normal. In the absence 
of heat release fluctuations and for perfect boundary 
conditions, the matrix is symmetric and hence normal for 
classical boundary conditions. 
 
Convection plays a dominant role in combustors, and the 
combustion process. The combustion process is often 
modelled using advection diffusion equation for the Schvab 
– Zeldovich variable in the case of diffusion burners and 
advection-reaction equation in the case of premixed flames. 
It has be shown that the advection-diffusion operator is non-
normal [26, 27].  Subramanian & Sujith [16] has shown that 
the advection-reaction equation for a premixed flame is non-
normal. 
 
As a result of the non-normal behavior, the solutions exhibit 
large transient growth which could potentially trigger 
nonlinearities in the system when the amplitudes reach high 
enough values. Under such circumstances, classical linear 
stability analysis becomes a poor indicator of the stability of 
the system [28]. Non-normality and transient growth and 
their consequences on hydrodynamic stability have been 
studied in detail in the context of turbulence by Baggett, 
Driscoll & Trefethen [29]. They explained that in the non-
normal evolution, the input and output structures (such as 
streamwise vortices, streaks etc.) are different and 
nonlinearity closes the feedback loop by converting some of 
the output energy into input. In thermoacoustic systems, 
transient growth resulting from non-normality in 
combination with nonlinear effects can lead to the growth of 
the acoustic oscillations over a large number of cycles. 
 
The consequences of non-orthogonality of eigenmodes have 
been studied in the context of instability of magnetic 
plasmas by Kerner [30], atmospheric flows by Farrell [31] 
and transition to turbulence by Baggett, Driscoll & 
Trefethen [29], Trefethen et al. [28] and Gebgart and 
Grossman [32]. 
 
In order to analyze equation (3), the operator has to be 
reduced to a finite dimensional matrix. In Section 2, the 
partial differential equations governing the thermoacoustic 
interaction are reduced to a set of ordinary differential 
equations using the Galerkin technique. This is achieved by 
decomposing the spatial variation using basis functions. 
This is similar to decomposing a vector along some basis. 
The basis functions used in this study are not the 
eigenmodes of the linearised system, but just a set of 
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functions which satisfy the boundary conditions. The ODEs 
obtained using the above technique are in the time domain. 
 
These evolution equations are solved numerically using the 
4th order Runge-Kutta scheme. This system of nonlinear 
ODEs is similar to the numerous dynamical systems in 
literature. The complete evolution equations are linearized 
and are found to be non-normal. It must be emphasized that 
the eigenvalues of the linearized equations are not the wave 
numbers of the basis functions used in the Galerkin 
technique. 
 

3. A toy model for Rijke tube 
 

A horizontal Rijke tube with an electric heat source is a 
system convenient for studying the fundamental principles 
of thermoacoustic instabilities both experimentally and 
theoretically. In such a set-up, the mean flow is provided by 
a blower, which sucks air in the tube. This enables us to 
control the heater power and the mean flow independently, 
and side-step modeling the effects of natural convection. If 
the tube were oriented vertically, as in the classical Rijke 
tube, the effect of mean flow component caused by natural 
convection will have to be accounted for in the stability 
analysis. The horizontal orientation of the Rijke tube is 
implemented to exclude the influence of natural convention 
on the mean flow rate. Such a setup has been used by 
Matveev [9-11], Heckl [6], and Kopitz and Polifke [34]. A 
schematic of the horizontal Rijke tube setup is shown in 
figure (3). Balasubramanian and Sujith [13] demonstrated 
the consequences of non-normality using a model for such 
a set-up. 

 
Figure 3: Schematic of a horizontal Rijke tube set-up. 

3.1. Governing Equations 
Assuming a perfect, inviscid and non-heat-conducting gas, 
the governing equations for the one-dimensional acoustic 
field in the absence of mean flow and mean temperature 
gradient in the duct, the governing equations for the one-
dimensional acoustic field are [25]: 

Acoustic Momentum: 

0~
'~

~
~

=
∂
∂

+
∂

′∂
x
p

t
uρ        (4) 

Acoustic Energy: 

( )1p up Q
t x

γ γ
′ ′∂ ∂ ′+ = −

∂ ∂
% % &%
% %

      (5) 

 
where, p%  is the acoustic pressure, u%  is the acoustic 

velocity, Q′&%  the unsteady heat release rate, and γ is the 
ratio of specific heats.  A modified form of King’s law is 
used to model the heat release rate. Since King’s law 
exhibits nonlinearity only for velocity perturbations greater 
than the mean fluctuations, Heckl [6] suggested the 
following empirical model for the heat release rate: 
 

0 02 ( ) ( )   ( )
2 3 33

w w w
v f f

L T T d u uQ C u t x x
S

πλ ρ τ δ
⎡ ⎤−′ ′= + − − −⎢ ⎥
⎢ ⎥⎣ ⎦

&% % %   (6) 

In the above expression, wL  is the equivalent length of the 
wire, λ  is the heat conductivity of air, vC  is the specific 
heat of air at constant volume, τ  is the time lag, ρ  is the 
mean density of air, wd  is the diameter of the wire, 

( )wT T−  is the temperature difference, and S is the cross-
sectional area of the duct. 
 
A more detailed model will require modeling of the 
hydrodynamic zone, instead of using a correlation for the 
wire heat transfer. This increases the complexity of the 
problem, but brings much more richness to the problem 
[14, 15, 35]. The formalism for developing such a model is 
given in Section 7.3. 

The above equations can be non-dimensionalized as 
follows; 

0
0

0 0

;  ;  ;  ;  ;  a
a

L ux L x t t u u u p pp M
c c

′ ′ ′ ′= = = = =%% % %     (7) 

where 0c  is the speed of sound, aL  is the duct length and 
p  is the pressure of the undisturbed medium and 0u  is 

the mean flow velocity. The acoustic equations in the non-
dimensional form can be written as follows: 

0u pM
t x

g
¢ ¢¶ ¶+ =

¶ ¶
       (8) 

( ) ( )1 1
3 3 f

p uM k u t x x
t x

γ τ δ
⎡ ⎤′ ′∂ ∂ ′+ = + − − −⎢ ⎥

∂ ∂ ⎢ ⎥⎣ ⎦
      (9) 

where,   ( ) 0
0

2 ( )
1

23
w w w

v
L T T d

k C u
Sc p

γ πλ ρ
−

= −       (10) 

The above set of partial differential equation can be 
reduced to ordinary differential equations using the 
Galerkin technique [35]. The velocity and pressure field 
can be written in terms of the duct’s natural modes in the 
absence of the oscillatory heat release rate as given below 
[36, 37]: 



68 | P a g e  
 

1 1

cos( )   and  sin( )j j

j j

Mu j x p j x
j

γη π η π
π

∞ ∞

= =

′ ′= = −∑ ∑ &  (11) 

The Galerkin technique makes use of the fact that any 
function in a domain can be expressed as a superposition 
of expansion functions which form a complete basis in that 
domain. The basis functions are chosen such that they 
satisfy the boundary conditions. However the choice of the 
basis functions is not unique. The basis functions chosen 
here are just an arbitrary basis and are not the 
eigenfunctions of the system. They are the eigenfunctions 
of the self adjoint part of the linearized system. Clearly, 
the expansion functions chosen here satisfy the boundary 
conditions and they form a complete basis. 

Substituting the above expansions into Eq. (8) and (9), and 
projecting along the basis functions the following 
evolution equations are obtained, 

j
j

d
dt
η

η= &          (12) 

2 2 1 1( ) sin( )
3 3

j
j j f f

d kk j u t j x
dt M
η

η π τ π
γ

⎡ ⎤
′+ = − + − −⎢ ⎥

⎢ ⎥⎣ ⎦

&   (13) 

In the presence of damping the above set of equations can be 
modified as follows [10]: 

j
j

d
dt
η

η= &          (14) 

2 2 1 12 ( ) sin( )
3 3

j
j j j j j f f

d kk j u t j x
dt M
η

ξ ω η η π τ π
γ

⎡ ⎤
′+ + = − + − −⎢ ⎥

⎣ ⎦

&
&   (15) 

where the damping constant is given by: 

1 1 2 1
1

2j j jc cξ ω ω ω ω
π

⎡ ⎤= +⎣ ⎦        (16) 

In this paper, the effect of damping is studied by varying the 
constants 1c  and 2c  in the above expression. In 
experiments, the changes in these constants in Eq. (16) can 
be effected by adjusting the end conditions and other 
experimental conditions.  Equations (14) & (15) can be 
expanded to 2nd order for low amplitudes to yield the 
following matrix differential equation, 

( , ) 0T
NL NN

d B B
dt
χ χ χ χ+ + =        (17) 

where, 1 1 2 2[             ............    ]T
N Nχ η η η η η η= & & &  

(18) 

(19) 

where, ( )/ 3 sin( ),  / 2j f j jk M j j xβ γ π π α β= = . 

We normalize the system such that the 2-norm of the state 
vector is proportional to the acoustic energy (see Section 
3.6). To achieve this, we multiply the system by a diagonal 
weight matrix  
 
W = diag [1  (1/π)  1 (1/2π) ….. 1   (1/Nπ)]. 
 
The modified state vector is W χ  and modified linearized 

operator is 1
NNWB W − . Various cases highlighting the non-

normal and nonlinear nature of thermoacoustic oscillations 
and their consequences are discussed using examples in the 
following section. 

3.2. Results and discussions 
The role played by non-normality on thermoacoustic 
interaction can be studied through the following examples. 
The numerical simulations were performed by keeping 
some of the parameters fixed and varying others. The 
parameters that were kept fixed are γ = 1.4, 

0.0328  ,W mKλ =  719 / ,vC J kg K=  T =295 K, dw = 

0.0005 m and ρ =  1.205 3/kg m . The set of first order 
ordinary differential equations (14)-(15) was integrated 
numerically using the 4th order Runge Kutta technique. The 
numerical simulations were performed with ten acoustic 
modes so that the change in the solution with increase in 
number of modes is less than 5%. 
 

3.3. Triggering 
If the system is non-normal as well as nonlinear, oscillations 
can grow even when the individual eigenvalues indicate 
linear stability. For such systems, there exists some initial 
condition for which the oscillations decay and some other 
initial conditions for which they grow. This feature is 
captured by a heater located at 0.7fx = , 0.3 /u m s=  

and 0 344.64 /c m s= , 2.5 wL m= , 1000 wT K= , 

1 20.0415 , 0.0045 ,c c= = 20.0016 cS m= . The time 
lag was chosen as 0.01.τ =  Figures (4a) and (4b) show 
triggering in the absence of damping. Figure (4a) shows that 
for an initial condition of ( ) ( )3 50 0.1 & 0 0.1η η= =  and 

( )1 0 0iη ≠ = , the oscillations decay, whereas figure (4b) 
shows that the oscillations grow for a different initial  
condition; i.e., for ( ) ( )3 50 0.12& 0 0.1η η= =  and 

( )1 0 0iη ≠ = . Further, figure (4b) shows that the amplitude 

2
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of the oscillations saturates. Figure (4c) shows the evolution 
of the phase between the acoustic oscillations and the heat 
release which finally saturates as the limit cycle is reached. 
The evolution of the non-dimensional acoustic energy (

( )221 1
2 2p Muγ′ ′+ ) is obtained after smoothing with 

moving average for both the linear (integration of Eq. 14 
and 15 without nonlinear terms) and nonlinear simulations 
(with nonlinear terms included) and are presented in Figure 
4(d). The linear simulation shows that the acoustic energy 
grows initially and eventually decays. The nonlinear 
simulation is almost identical to the linear simulation 
initially. After sufficient transient growth, the nonlinearity 
‘picks up’ which can be seen from the deviation of the 
nonlinear evolution from the linear evolution. 
 

The phenomenon of triggering has been observed in 
experiments with Rijke tube [10], and also in other 
thermoacoustic devices such as solid rocket motors [38, 
39]. This is usually attributed to nonlinearities. However, 
as shown in this example, this is not the complete picture. 
An initial condition with very small initial amplitude, if 
applied in the optimal manner, can cause growth in the 
energy of the system. If this transient growth due to non-
normality is high enough to make the nonlinear effects 
significant, the system which is stable according to 
classical linear stability theory can become nonlinearly 
unstable. Therefore for non-normal systems, a small 
amplitude initial perturbation which can be thought to be 
in the linear range can cause the nonlinear evolution to 
reach self-sustaining oscillations. 

 
Figure 4a 

 
Figure 4b 

 
Figure 4c 

 
Figure 4d 

Figure 4: shows the evolution of non-dimensional acoustic 
velocity when the initial condition is a) ( )3 0 0.1η = & 

( )5 0 0.1η = , ( )1 0 0iη ≠ = ; b) ( )3 0 0.12η =  & 

( )5 0 0.1η = , ( )1 0 0iη ≠ = . with the other parameters 

being 0.29fx = , 0 399.6 / ,c m s=  3.6 wL m= ,  

0.5 / ,  u m s=  31.205 / ,  kg mρ =  1000 wT K= , 
719  / ,  vC J kgK= 0.0328 /W mKλ = . c) Evolution of 

phase and d) linear and nonlinear evolution of the acoustic 
energy. 

3.4. Growth of oscillations in an initially 
decaying system 

This section discusses instability in a thermoacoustic system 
which is stable according to classical linear stability analysis 
based on eigenvalues and is initially decaying. In this 
example, the feature is captured by a heater located at 

0.8fx = , 0.3 /u m s= , 1 0.04c = , 2 0.004c = , 

0 344.64 /c m s= .  The initial conditions chosen are 

1(0) 0.38η = , 1(0) 0iη ≠ =  and (0) 0iη =& . La, Lw and Tw 
were chosen as 1 m, 2.5 m and 1680 K, respectively. The 
wire diameter was chosen to be 0.5 mm, the duct cross 
sectional area S was chosen to 0.00156 m2 and time lag was 
chosen as 0.02.τ =  Figure 5a shows the evolution of 
acoustic velocity at the heater location. It can be seen from 
the spectra of the evolution for the first quarter (25 non-
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dimensional time) of the evolution (Figure 5b) and that of 
the total (100 non-dimensional time) evolution (Figure 5c) 
that low frequency oscillations that are initially present in 
the system decays and high frequency oscillations sets in 
after some time (very close to the frequency of the 4th 
Galerkin mode). Further, it can be seen that the oscillations 
eventually saturate after nonlinear growth. It must be 
emphasized that classical linear stability analysis based on 
the eigenvalues shows all eigenmodes of this coupled 
system to be stable. 
 
Figures 5d and e show the evolution of the acoustic velocity 
projected on the first and fourth Galerkin modes. It can be 
seen that while the acoustic velocity projected to the first 
Galerkin mode decays, the projection on the fourth mode 
grows. After sufficient energy is projected onto the 4th 
Galerkin mode, it projects back energy on the 1st Galerkin 
mode, also causing it to grow and then finally saturate along 
with it. We observe a shift in frequency during the 
evolution. The net effect of all these energy transfer causes 
the acoustic velocity to grow and eventually saturate. This 
feature has been discussed in the context of turbulence and 
it is known as “bootstrapping” [28, 32]. Yoon, et al. [8] has 
discussed “bootstrapping” in the context of Rijke tube using 
an ad hoc nonlinear model for the heat release rate. 
 
There are two mechanisms by which energy can get 
redistributed in the system. The first mechanism is a 
nonlinear mechanism where two individual eigenmodes 
interact directly causing exchange of energy between these 
two modes. Another mechanism which causes redistribution 
of energy is the interaction of various modes with the base 
flow. At low amplitudes when the nonlinear effects are not 
significant, the redistribution of energy mainly occurs due to 
the interaction of various modes with the base flow. When 
the disturbance is caused by exciting only one eigenmode, it 
is expected that the oscillations will decay if the system is 
linearly stable. However, if the system is non-normal, then 
the oscillations can grow if there is a small amount of 
energy in the unexcited modes. This could be due to noise in 
the system or due to a mild nonlinearity. 
 
The authors would like to emphasize that the mild 
nonlinearity just transfers some energy from the excited 
modes to other modes. Though, the individual modes can 
decay there can be an overall growth of amplitude due to 
non-normality. This overall growth can cause nonlinear 
effects to become significant and more energy can get 
exchanged between the various modes. Such a situation 
cannot occur in a linearly stable normal system (classical 
linear stability) if the nonlinearity is initially mild. This is 
because the amplitudes of a normal system decay if the 
individual eigenmodes decay and hence nonlinearity 
becomes milder and milder. This explains how non-
normality plays an important role in the exchange of energy 
between various eigenmodes. 

 
Figure 5a 

 
Figure 5b 

 
Figure 5c 

 
Figure 5d 
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Figure 5e 

Figure 5: (a) shows the non-dimensional evolution of 
acoustic velocity (b, c) the FFTs (d) projection on first 
Galerkin mode and (e) projection on 4th Galerkin mode 

3.5. Transient growth 
As discussed earlier, the non-normal nature of a system can 
cause transient growth of oscillations which can trigger 
nonlinearities in the system. In this section, a method to 
analyze transient growth is discussed. Schmid and 
Henningson [33] gave a detailed discussion on the analysis 
of transient growth, in the context of transition to turbulence 
in shear flows. They analyzed the stability of shear flows by 
studying the energy growth of the system. This analysis is 
general and can be applied to thermoacoustic systems as 
well. Balasubramanian and Sujith [12, 13] performed such 
an analysis in the context of thermoacoustic systems. The 
evolution of the acoustic oscillations in a Rijke tube is also 
non-normal as † †LL L L≠ . Here, L is the stability (or 
evolution) operator (The linearized dynamical system is 
represented by d dt Lχ χ= ) The symbol †  denotes the 
adjoint (conjugate transpose) of an operator. The solution of 
the linearized system of evolution equations [Eq. (14 & 15) 
without the nonlinear term] can be written in the operator 
form as [33] (Schmid & Henningson 2001): 
 

( ) exp( ) (0)t Ltχ χ=       (20) 
 
Transient growth is quantified by maximum growth factor 
which is defined as [33], 
 

( )
0

2 2 2( ) max ( ) (0) exp( )G t t Lt
χ

χ χ= =    (21) 

where, ‘max’ indicates that the ratio of the norms is 
maximized over all initial conditions. Growth factor is a 
measure of maximum amplification of energy density at an 
instant of time. The expression in (21) is maximized for 
various instants of times, over all possible initial 
conditions. The maximum growth factor and the optimum 
initial condition were computed using singular value 
decomposition. The stability of a system can be studied 
using the maximum growth factor in a particular time 

interval [0, t] which is defined as max 0
max ( )

t
G G t

≥
= . This 

maximum is obtained after smoothening G(t). 

The above maximum value is infinite if L has an 
eigenvalue with a positive real part. This corresponds to a 
linearly unstable system. In the present paper, maxG  values 
for various parameters such as time lag and heater location 
are calculated and the regions with large transient growth 
are identified. Transient growth cannot occur for those 
parameters which have max 1G = . When max 1G = , the 
energy at any instant is less than the initial energy of the 
system indicating that the energy of the system decays. 
When max 1G > , the system will exhibit transient growth. 
Hence a system that follows the linear evolution initially 
and has Gmax =1 will follow the linear evolution for all 
time, as there is no transient growth to trigger nonlinear 
effects. This fact is used in the next section to obtain 
necessary and sufficiency conditions for the stability of the 
system. 

In the results obtained from this toy model, the growth 
factor is in the range of 2 to 5. The authors would like to 
point out that in the present analysis a simple model for the 
heating element is used. This simplified approach was used 
to focus on the non-normal nature of the acoustic equations 
alone in the presence of heat source. However, the energy 
released at the heating element is governed by an advection 
diffusion equation. It has been shown that the advection-
diffusion equation is non-normal [26, 27]. This will cause 
the growth factor to be much larger as the number of 
eigenmodes of the coupled system will be much larger as 
can be seen from the calculations of Mariappan et al. [14]. 

3.6. Transient Energy Growth: Interpretation 
In this section, we demonstrate the procedure to compute 
the transient energy growth and its physical interpretation 
in the context of thermoacoustic systems [38]. Norm plays 
a central role in computations of the transient energy 
growth. The norm of a mathematical object is a quantity 
that in a physical or an abstract sense describes the length, 
size, or extent of the object [39]. The 2-norm of a vector is 
its length in the Euclidean space. Thus on pℜ  or a p-
dimensional vector space over the Eucledian space ℜ , a 
vector denoted by 1 2( , ,..., )px x x x=  has its 2-norm 

defined as 2 2 2
1 2 ... px x x+ + + . ( )tχ  is a 2N dimensional 

vector space at a time t given by Eq. (7). The square of the 
norm ( )tχ  can thus be represented as follows: 

2
2 2

2
1

( )
N

i
i

i i

t
k
η

χ η
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

&
      (22) 

The non-dimensional acoustic energy at any time t is given 
by the following equation: 
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1
2 2

0

1 1( ) ( , ) ( ( , ))
2 2

E t p x t Mu x t dxγ⎛ ⎞′ ′= +⎜ ⎟
⎝ ⎠∫     (23) 

On substituting the Galerkin expansions from Eq. (4) in Eq. 
(11), it can be easily shown that [40]. 

2
2( ) ( )

2
ME t tγ χ⎛ ⎞= ⎜ ⎟

⎝ ⎠
      (24) 

Hence the greatest possible energy growth at time t, 
maximized over all possible initial perturbations (0)χ  is 
measured by the growth function defined as follows [24, 
33]: 

2
2

2(0)

( )
( ) max exp( )

(0)

t
G t Lt

χ

χ

χ
= = −     (25) 

exp( )Lt−  is the 2-norm of the matrix exponential 
exp( )Lt− . For any general matrix A, the 2-norm can be 
geometrically interpreted as the radius of the smallest circle 
that contains the image of a unit disk under the map A. 
Mathematically, the 2-norm of any matrix is its principal 
singularvalue [39]. It can be computed by singularvalue 
decomposition (SVD), using standard subroutines available 
in most software libraries. SVD of a general n m× matrix 
A is defined as TA U V= Σ . U is a n n×  unitary matrix, 
Σ  is a n m×  matrix with non-negative numbers on its 
diagonal and zeros off the diagonal and TV  is the transpose 
of V, which is a m m× unitary matrix. Further, the 
diagonal of Σ  consists of min( , )n m elements; arranged in 
a descending order. These diagonal elements are known as 
the singularvalues of A . Geometrically, A can be visualized 
as an operator that maps a sphere of unit vectors in vector 
space 1S  into an ellipsoid in vector space 2S  with the 
singularvalues as the lengths of the principle radii of the 
ellipsoid. The directions of the principle radii are the 
column vectors of U and the directions of their pre-images 
are the columns of V. 

In light of the above discussion, Eq. (20) can be rewritten 
as follows: 

( ) (0)Tt U Vχ χ= Σ     (26) 

Equation (14) can be interpreted from an input-output view 
point. (0)TV χ  resolves the initial condition vector (0)χ  

into an orthonormal basis of input vectors iv ( thi column 
V). Each of the components are amplified by the 
corresponding singularvalues iσ (diagonal element of Σ ). 

(0)TU V χΣ  represents the output vector ( )tχ  as a linear 
superposition of components along the orthonormal basis 
formed by the output vectors iu ( thi column of U). For i = 
1, we can write the following equation: 

  
1 1 1

L te v uσ− =      (27) 

Since SVD returns the singularvalues in a descending 
order, v1 is the most sensitive (highest gain) input direction 
and u1 is the most sensitive (highest gain) output direction. 
Thus from Eq. (27), 1σ  signifies the maximum possible 
gain. Hence, the principle singularvalue of a matrix gives 
the 2-norm or the maximum amplification of the energy. 
The corresponding right singularvector gives the most 
sensitive or the optimal initial condition for maximum 
energy growth. It must be emphasized that the maximum 
amplification obtained by the above procedure is for a 
particular time instant t maximized over all initial 
conditions (Eq. (13)). Thus, in a given time interval [0, t], 
the global maximum amplification factor is given as 
follows: 

( ) ( )2
max max ( ) max exp( )

t t
G G t Lt= = −   (28) 

Similar geometric interpretation of the optimal initial 
condition required for maximum growth is provided by 
Farrell and Ioannou [40] in the context of atmospheric 
flows. The maximum growth rate that can be attained at 
time t is greater or equal to that of the fastest growing 
eigenvector at t and the minimum growth rate (or the least 
singularvalue) is less than or equal to that of the slowest 
growing eigenvector [40]. This can be translated to the 
following inequality: 

*( )
min max 1( )i i te G tλ λσ σ σ+≤ ≤ = =   (29) 

where iλ  is the eigenvalue of ( )L− , *
iλ  is conjugate of 

iλ , minσ  is the least singularvalue of exp( )Lt−  and 1σ  is 
the principal singularvalue of exp( )Lt− . 

Unlike SVD, Eigenvalue Decomposition (EVD) does not 
provide an orthogonal input and output vector basis for 
systems far from normality. EVD is not an appropriate tool 
for obtaining transient growth and the most optimal initial 
condition direction for the maximum energy amplification. 
The eigenvalues obtained by EVD determine only the 
asymptotic behavior of any linear dynamical system. In 
normal systems, as there is no possibility of transient 
growth, the stability predicted by the eigenvalues remains 
valid even at finite time. However, if the system is far from 
normal, no concrete conclusions about its transient 
behavior can be made based on eigenvalues alone. Thus, 
EVD is not sufficient to study the complete dynamics of a 
non-normal thermoacoustic system. 

SVD provides a powerful method to analyze the transient 
behavior of non-normal systems. As seen in this section, 
the maximum energy growth can be determined from the 
singularvalues. Using this, in the next section, we 
characterize the maximum energy growth for the Rijke tube 
model. 

3.7. Pseudospectra 
The degree of resonant amplification that may occur in a 
normal system in response to an input frequency is 
inversely proportional to the distance in the complex plane 
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between the input frequency and nearest eigenvalues. 
However, in the case of a non-normal operator, the 
resonant amplifications may vary non-uniformly with the 
proximity to eigenvalues. The amplification can be large, 
even when the input frequency is far from any eigenvalue 
[28, 41]. 

The concept of ε−pseudoeigenvalues can be used to 
analyze the behavior of evolution governed by such non-
normal operators [27, 28, 41]. z is an ε pseudoeigenvalue of 

A if it satisfies ( ) 1 1zI A ε− −− ≥ . There are other 

equivalent definitions of pseudoeigenvalues and they have 
been discussed in great detail by Trefthen and Embree [27, 
28, 41]. It should be noted that the systems discussed in this 
paper is a self-excited system. In a linearly stable self-
excited system, if the initial condition is along one of the 
eigenmodes, then there is no growth and the oscillations 
will decay throughout the evolution. However, in most 
situations, the initial conditions do not correspond to any 
particular eigenmode and hence transient growth can occur.  
Transient growth and the non-normal nature of the operator 
can be studied using pseudospectra. 

The pseudospectra of normal operators are closed circles. 
For a non-normal operator, when a contour corresponding 
to some ε  value spills to the right half of the spectrum 
more than the perturbations in the eigenvalues, the system 
can exhibit transient growth causing the amplitudes to 
increase to high values [28]. 

Trefethen et al. [28, 41] have used the relation between the 
geometry of the pseudospectra and the lower bound on the 
transient growth factor to analyze hydrodynamic instability 
in Couette and Poiseuille flows. The lower bound on the 
transient growth factor is defined in terms of the Kreiss 
constant ( )Aκ  as given below [43]. 

( ) ( )
0 0

sup suptA

t

A
e Aε

ε

α
κ

ε≥ >
≥ ≡    (30) 

Here, ( )Aεα  is the pseudospectral abscissa and it gives 

the abscissa of a point on the ε-pseudospectra with the 
largest real part. The above inequality suggests that if the 
pseudospectra of A protrude into the right half plane such 
that ( )Aεα ε> , then the system can exhibit transient 
growth. 

Rayleigh criterion [2] gives the condition for acoustic 
driving to occur. However, the prediction of transient 
growth by Rayleigh criterion requires the precise 
knowledge of initial conditions. The ambiguity of initial 
conditions due to noise makes the identification of transient 
growth using Rayleigh criterion difficult. However, the 
condition obtained in terms of pseudospectra are conditions 
on the evolution operator and hence do not depend on the 
initial conditions [12, 13]. 

 
Figure 6: Pseudospectra for a Rijke tube with parameters 

0.95fx = , 0.1 /u m s=  and 0 344.64 /c m s= , Lw =2m 

and Tw = 1300 K, S = 0.0016 m2, 0.01τ = , c1 = 0.415 and 
c2 = 0.0045. 

Figure (6) shows the pseudospectra for a Rijke tube with 
parameters 0.95fx = , 0.1 /u m s=  and c0 = 344.64 m/s, 

Lw =2 m and Tw = 1300 K, S = 0.0016 m2, 0.01τ = , c1 = 
0.415 and c2 = 0.0045. It is clear from the non-circular 
behavior that the system is non-normal. It is clear that the 
contour is not entirely on the left half plane. Hence, it can 
be inferred from Eq. (30) that this system shows transient 
growth. This indicates that there is an “unstable” pseudo-
eigenvalue for some ε . Even if a system behaves linearly, 
the transient growth can cause the amplitudes to reach high 
values and trigger nonlinearities which can cause the 
oscillation to grow further. 

4. Non-normality in ducted premixed flame-
acoustic interaction 

Stringent emission requirements drive operating conditions 
of premixed gas turbines and combustors to the lean 
regime. However, lean premixed combustion has been 
shown to be particularly susceptible to combustion 
instability [42, 43]. Subramanian and Sujith [16] 
investigated the role of non-normality and nonlinearity in 
flame-acoustic interaction in a ducted premixed flame. 

The premixed flame thermoacoustic system is modeled by 
considering the acoustic momentum and energy equations 
together with the equation for the evolution of the flame 
front obtained from the kinematic G-equation [44]. The G-
equation is rewritten as the front-tracking equation as given 
in Eq. (32) for an axi-symmetric wedge flame in a purely 
axial flow [45] shown in figure 7. The scales used for the 
non-dimensionalisation are derived from the length of the 
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flame  and velocity of the flow  as shown below 
in equation (32). 

  (31) 

 (32) 

The configuration of a duct which is open at both ends with 
the axi-symmetric wedge flame stabilized at an axial 
location within it is considered. 

The linear operator of a generic thermoacoustic system has 
been shown to be non-normal [12, 13]. The linearised 
operator for the premixed flame thermoacoustic system is 
also found to be non-normal leading to non-orthogonality 
of its eigenvectors. Non-orthogonal eigenvectors can cause 
transient growth in evolutions even when all the 
eigenvectors are decaying for a linearly stable case. 
Therefore, classical linear stability theory cannot predict 
the finite time transient growth observed in non-normal 
systems. A parametric study of the variation in transient 
growth due to change in parameters such as flame location 
and flame angle is performed. It is found that the transient 
growth is pronounced when the flame has a small angle of 
flame and is located close to the center of the duct. The 
optimum initial condition which causes maximum transient 
growth can be identified using singular value 
decomposition (SVD) for a given system configuration. In 
addition to projections along the acoustic variables of 
velocity and pressure, the optimal initial condition for the 
self evolving system has significant projections along the 
variables for heat release rate. 

 
Figure 7. Geometry of an axi-symmetric wedge flame 
stabilized on a wire. Here  is the displacement of 
instantaneous flame shape from the unperturbed flame 
shape along ,  is the flame angle,  is the laminar 
flame speed,  is the radius of the burner and  is the mean 
flow. 

Nonlinear simulations show subcritical transition to 
instability from a small but finite amplitude perturbation to 
the system as shown in figure 8. The system is perturbed 
with the optimal initial perturbation with initial acoustic 
velocity of small but finite amplitude  at the 
flame location. It shows that the linear and nonlinear 

evolutions diverge within a short period of time. 
Asymptotically, the linear evolution decays as shown in 
figure 8(a) while the nonlinear evolution reaches a self 
sustained oscillation  of amplitude  as seen in 
the inset from figure 8(b). Therefore an initial condition 
with very small initial amplitude, if applied in the optimal 
manner, can cause transient growth in the energy of the 
system. 

Therefore, the premixed flame thermoacoustic system has 
more degrees of freedom than the number of acoustic 
modes. These additional degrees of freedom represent the 
internal degrees of freedom of the flame front or the 
internal flame dynamics. These internal degrees of the 
flame front must be preserved in the thermoacoustic model 
to accurately capture the non-normal effects. In 
thermoacoustic systems, subcritical transition to instability 
has been thought of as being caused by a large amplitude 
initial perturbation to a linearly stable system. In a linearly 
stable case, even a small but finite amplitude optimal initial 
perturbation is shown to reach limit cycle. The optimum 
initial condition may have contributions from variables that 
represent the flame front dynamics, and will not be purely 
acoustic. Therefore in non-normal systems, initial 
perturbations with amplitudes that are small when 
compared with the limit cycle oscillations can cause 
subcritical transition to instability. 

 
Figure 8: Evolution of acoustic velocity at the flame for (a) 
linearised system and (b) nonlinear system with , 

, , , , 
 m/s and  J/Kg. Initial 

condition is . 

 



 

75 | P a g e  
 

5. Non-normality in ducted diffusion flame-
acoustic interaction 

Balasubramanian and Sujith [12] investigated the role of 
non-normality and nonlinearity in flame-acoustic 
interaction in a ducted diffusion flame. They used the 
infinite rate chemistry model to study unsteady diffusion 
flames in a Burke-Schumann type geometry. The 
combustion response to perturbations of velocity is non-
normal and nonlinear. This flame model is then coupled 
with a linear model of the duct acoustic field to study the 
temporal evolution of acoustic perturbations. The one-
dimensional acoustic field is simulated in the time domain 
using the Galerkin technique, treating the fluctuating heat 
release from the combustion zone as a compact acoustic 
source. The coupled combustion-acoustic system is non-
normal and nonlinear. An analysis of transient growth 
revealed that the growth factor increased monotonically 
with the ratio of the acoustic to combustion length scale 
and Peclet number. However, the variation of growth factor 
with the nondimensional slot width was not monotonic. 

The model exhibited the occurrence of triggering; i.e., the 
thermoacoustic oscillations decay for some initial 
conditions whereas they grow for some other initial 
conditions. The role of non-normality and nonlinearity in 
triggering instabilities starting from small but finite initial 
conditions is brought out. The occurrence of 
“pseudoresonance” occurring at frequencies far from the 
system’s natural frequencies is highlighted. Non-normal 
systems can be studied using pseudospectra, as eigenvalues 
alone are not sufficient to predict the behavior of the 
system. Further, both necessary and sufficient conditions 
for the stability of a thermoacoustic system are presented in 
this paper. 

6. Thermoacoustic instability in solid rocket 
motor: non-normality and nonlinear 

instabilities 
Solid rocket motors (SRMs) are often prone to combustion 
instability.  The prediction of combustion instability in the 
early design stage is a formidable task due to the complex 
unsteady flow field existing in the combustion chamber.  
Combustion instability occurs when the unsteady burn rate 
from the propellant (in SRMs) is amplified by the positive 
feed back of the acoustic oscillations in the chamber.  
Combustion instability causes excessive pressure 
oscillations, which might resonate with the structural 
modes of the rocket, leading to excessive vibration and 
damage of the payload.  Further, during the occurrence of 
combustion instability, the heat transfer to the combustion 
chamber walls is increased, eventually melting them [48].  
Instabilities in SRMs are known to exist since 1930 [49].  
Since then, many investigations were conducted to 
understand the mechanisms behind them and arrive at 
measures to control the same. Mariappan and Sujith [20] 
investigated the role of non-normality in the occurrence of 

triggering instability in solid rocket motors with 
homogeneous propellant grain. 
Theoretical analysis starts with linearising the governing 
equations and analyzing their stability.  This leads to 
finding the eigenvalues (complex frequency) and 
eigenmodes of the system.  In classical linear stability 
analysis, a system is said to be linearly stable if the 
oscillations decay to zero in the asymptotic time limit, 
reaching finally the steady state (stable fixed point).  The 
system is linearly unstable if the oscillations grow 
exponentially.  Both the definitions are for ‘small’ 
disturbances with respect to the corresponding mean 
quantities.  Non-normal systems show initial transient 
growth for suitable initial perturbations even when the 
system is stable according to classical linear stability 
theory.  Transient growth plays an important role in the 
subcritical transition to instability regime [20].  In SRM the 
above is termed as ‘pulsed instability’, where the system is 
linearly (small amplitude) stable, but nonlinearly (large 
amplitude) unstable.  This section focuses on the role of 
transient growth during pulsed instability. 
The SRM considered here has a prismatic cylindrical 
propellant grain of length ‘l’, port circumference ‘Sl’ and a 
constant port area ‘Sc’.  A schematic of the geometry 
considered with the coordinate system used is shown in 
figure 9(a).  A cylindrical geometry is studied, so as to 
make the analysis simple.  The acoustic momentum and 
energy equations are used to model the chamber acoustic 
field.  Galerkin technique [36, 37] is used to solve the 
above equations.  The equation for unsteady burn rate from 
the propellant, which drives the chamber acoustic field, is 
taken from Krier et al. [49].  The derivation of the equation 
is given in Krier et al. [49] and the final nonlinear equation 
is as follows. 
At each ‘x’ location, 

2

2(1 ) 0T T TR
y yτ

∂ ∂ ∂
− + − =

∂ ∂ ∂
, 0 ,  0y τ≤ < ∞ ≤ < ∞    (33) 

1pm
SR T= −  

( ) ( 0, )ST T yτ τ= =  

( ) ( )2t lR a Fτ α= =  

Boundary Condition (BC): 
2

0

(1 ) ((1 ) ) (1 )
1

pn mn

y

T p p H H R
y R=

∂ + + −
= − − +

∂ +
   (34) 

( , ) 0T y τ→ ∞ =  

Initial Condition (IC): 
0( ,0) ( ) ( )st pT y T y T y= +       (35) 

where, ( ) ( ) ( )2,  ,y y R t l a Rα τ α= =%

( )( ) ( ) ( ),0 ,0,  ,S p S SH Q S T T T T T T T∞ ∞ ∞= − = − −% % % % % %
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,y
stT e−= T∞

%  is the temperature of the propellant at 

y → ∞ , ,0ST%  is the surface temperature of the propellant, 

stT  is the non-dimensional steady state temperature, 0
pT  is 

the non-dimensional temperature fluctuation at t = 0, n is 
the burn rate index, mp is the pyrolysis coefficient, α  is the 
thermal diffusivity of the propellant, SQ  is the overall heat 
release per unit mass at the propellant surface, pS  is the 
specific heat capacity of the propellant, y is the non-
dimensional distance from the propellant surface, H is the 
ratio of the heat release at the propellant surface to its 
thermal capacity and F is the ratio of timescales of the 
chamber acoustics ( )aτ  and transient heat conduction in 

the propellant ( )thτ .  The co-ordinate system is fixed to the 
propellant surface which regresses according to the burn 
rate.  The geometry is shown in figure 9(b).  A Dirichlet 
type boundary condition far from the propellant surface and 
a Neumann type at the surface (2), which comes from the 
balance between the amount of heat transfer from the flame 
in the gas phase to the propellant surface, are applied. 

 

 

 
FIGURE 9. a) Schematic diagram of the combustion 
chamber geometry of the SRM considered, b) Geometry of 
the pressure coupled propellant response model; 
reproduced from reference [20], with permission from 
Cambridge University Press. 

Pulsed instability can possibly occur in two ways.  The first 
one is when the initial disturbance amplitude is large 
enough ( )( )0 8.43acE t = =  for the nonlinear terms to 
be dominant compared to the linear terms.  Numerical 
simulations of the linearised equations shows decaying 
acoustic energy ( )( )acE t  (figure 10a). This means that 
the system is linearly stable.  Now, for the same parameters 

and initial condition, the nonlinear simulation shows that 
the acoustic energy initially decays and after sometime it 
starts growing with the amplitude eventually reaching a 
limit cycle. 

 

 

FIGURE 10. The evolution of acoustic energy ( )( )acE t  
from linear and nonlinear simulations, a) Large amplitude 
initial condition ( )( )acE t  b) Small amplitude optimum 
initial condition; reproduced from reference [20], with 
permission from Cambridge University Press. 

 

The second route is by non-normal transient growth.  Here 
even if one starts with a finite small amplitude 

( )( )40 6.4 10acE t −= = ×  suitable initial condition, 

transient growth due to the non-normal nature of the system 
makes the oscillation grow even for a system stable 
according to linear stability theory.  The transient growth 
leads to large amplitude oscillations, which causes the 
nonlinear terms to play dominant roles.  Figure 10(b) 
shows the comparison of acoustic energy evolution with 
linear and nonlinear simulations.  The transient growth in 
the linear simulation decays eventually, while the nonlinear 
simulation leads to a limit cycle.  The higher transient 
growth in the linear simulation than in the nonlinear one is 
due to the damping effect from the nonlinear terms.  Here, 
the initial condition is chosen to be the optimum initial 
condition for the maximum transient growth to show the 
importance of this route to triggering. 

7. Summary and Conclusions 

In this paper, we examine the nature of thermoacoustic 
interactions. The coupled thermoacoustic system is non-
normal and hence the eigenvectors are non-orthogonal. 
Non-normality leads to short time amplification even 
though the individual modes decay exponentially. This 
transient growth can trigger nonlinearities when the 
amplitude of the fluctuations is sufficiently large. 

In thermoacoustic systems, triggering (subcritical transition 
to instability) has been thought of as being caused by a 
large amplitude initial perturbation to a linearly stable 
system. However, for a linearly stable system, even a small 
but finite amplitude perturbation along the optimal 
direction can take the system to the basin of attraction of 
the limit cycle. Further, the optimal initial condition may 
have contributions from variables that represent the flame 
dynamics, and need not be purely acoustic in nature. 
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Singularvalue decomposition (SVD) is a convenient tool 
for the analysis of non-normal operators. The principle 
singularvalue obtained by SVD provides the maximum 
possible growth rate of a non-normal system in a given 
time interval. SVD also provides the optimal initial 
conditions for this maximum growth. The maximum 
possible energy growth is greater than or equal to the 
growth rate of the fastest growing eigenmode in the same 
time and the minimum possible energy growth is less than 
or equal to the growth rate of the slowest growing 
eigenmode of the system. 

Transient growth in a non-normal system greatly depends 
on the system parameters which characterize the maximum 
growth factor (Gmax) and numerical abscissa of the system. 
A system is only capable of exhibiting transient growth if 
the numerical abscissa is greater than zero [38].  The 
maximum growth factor gives the ratio of the magnitude of 
the maximum transient growth possible to the initial 
magnitude supplied [38]. However, apart from all these 
characterizations, whether a system finally exhibits 
transient growth depends on the initial conditions supplied. 
A linear system with a very high Gmax and positive 
numerical abscissa will not have any transient growth if the 
initial condition is along the direction of one of the 
eigenvectors. In order to achieve the maximum transient 
growth, the optimal initial condition should be in the 
direction of the bi-orthogonal (or covariant) of the slowest 
decaying eigenmode [40]. Thus we see that the nature of 
evolution for a non-normal system depends highly on the 
type of initial condition (both direction and magnitude). For 
such systems sometimes the background noise which can 
be mathematically thought as an initial condition that could 
cause transient growth, and hence cause further instability. 

For a non-normal system, “pseudoresonance” is shown to 
occur at frequencies far from the spectrum. The stability 
and sensitivity of non-normal systems can be studied using 
pseudospectra. The pseudospectra of normal operators are 
disjoint circles. The pseudospectra of the thermoacoustic 
system are non-circular implying a highly non-normal 
nature of the system. If the pseudospectra are not entirely 
within the left-half plane then the system can show 
transient growth. It is possible to identify systems which 
cannot show transient growth by analyzing the 
pseudospectra. The geometry of the pseudospectra provides 
necessary and sufficient conditions for the stability of a 
system. 

The current methodology to study the onset of 
thermoacoustic oscillations involves looking for 
exponentially growing or decaying modes by calculating 
the individual eigenvalues of the linearized system. Further, 
the nonlinear behavior of the combustion response is 
modeled using flame transfer functions which are 
amplitude dependent. These approaches fail to predict 
phenomena such as nonlinear growth triggered by the 
transient growth which results from the nonnormality of the 
thermoacoustic system and excitation of frequencies that 
are not initially excited. More sophisticated approaches 

have to be taken and more involved methods have to be 
introduced, to accurately capture the transient behaviour 
which is critical for the overall system stability. However, 
the current linear system identification tools in time 
domain, along with the tools based on the linearized 
operator suggested in this paper such as growth factor and 
pseudospectra, can indeed be used to predict transient 
growth [50]. 

8. Outlook for the future 

8.1. Characterizing bifurcations in 
thermoacoustic systems 

The nonlinear dynamical behavior of a thermoacoustic 
system is best characterized by a bifurcation diagram. 
Numerical continuation is used to compute the numerical 
solutions to a set of parameterized nonlinear equations 
where other approaches to solve the problem are 
prohibitively expensive. But more importantly it can be 
used as a tool to gain insight into the qualitative properties 
of the solutions. It is used to calculate the bifurcations or 
qualitative changes in the solution for the variation of one 
or more parameters of the system. Solutions which are 
connected to a given state of the system are computed. 
Bifurcations are identified by including multiple test 
functions which change sign at the critical value of the 
parameter. 

This method has the advantage that once a stationary or 
periodic solution has been computed, the dependence of the 
solution on the variation of a parameter is obtained very 
efficiently. It can also be used to compute unstable limit 
cycles. The restrictions on this approach are that the 
different types of equations, encountered in models of 
physical systems, require special attention during the stages 
of analysis and the reduced order modeling. Presently at 
IIT Madras, this technique has been applied to 
thermoacoustic systems such as a nonlinear Rijke tube 
model [51] and to the ducted premixed flame model 
(Unpublished) to compute bifurcations of the system 
behavior. 

8.2. Adjoint Looping to determine the optimum 
initial condition 

Juniper [52] developed a procedure based on the adjoint 
looping of the nonlinear governing equations to find the 
lowest initial energy and the corresponding initial state that 
can trigger self-sustained oscillations. He applied this to the 
low order Rijke tube model developed by Balasubramanian 
and Sujith [13]. Continuation method used in conjunction 
with adjoint looping may provide both physical insight and 
engineering solution to studying subcritical bifurcations in 
thermoacoustic systems. 
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8.3. Asymptotic Analysis for Coupling CFD 
and Acoustic Solvers 

In recent years Computational Fluid Mechanics (CFD) and 
Computational Acoustics (CA) have evolved into mature 
subjects. Their role in the investigation of combustion 
instabilities needs to be examined in the context of their 
application to practical systems. CFD and CA has been 
used in recent years to study the combustion instability. 
While finite element modeling has been successfully used 
in modeling the complex acoustic field in complicated 
geometries [53], CFD has been successfully used to 
understand the unsteady combustion process [54]. 

The most complete solution to the problem is to solve 
conservation equations for mass, momentum and energy 
subject to appropriate boundary conditions. Numerical 
simulation has been performed in recent years, but it is 
hampered by the variety of scales. Furthermore, the use of 
CFD to do the full compressible flow simulations is 
prohibitively expensive. Therefore, a commonly adopted 
methodology is to determine the combustion response 
using a CFD analysis and then using this response as an 
input to the acoustic model  (e.g., references [55-57]). All 
models with the exception of a few [58, 59] have used a 
linear response function. Even the studies that used 
nonlinear response have used a transfer function of the 

form ( )uuQ AT
uu
QQ ,

/ˆ
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. Such a model can capture 

saturation in heat release. However, the equation used to 
study the combustion response are ad hoc; i.e., they are not 
derived based on a rigorous and mathematically consistent 
separation of the acoustic and combustion/hydrodynamic 
zones. 

The typical length of the acoustic resonating duct (la) is of 
the order of metres and the dimension of the heat source 
along the axial direction of the duct (thickness, lc) is of the 
order of millimetre and the Mach number (M) is of the 
order 10-3.  The thickness of the heat source is very small 
compared to the length scale of the acoustic length scale.  
Hence the heat source can be assumed to be compact 
compared to the acoustic length scale of the tube. The zone 
around the heat source is termed as the hydrodynamic zone.  
The length of the hydrodynamic zone in the axial direction 
of the duct is also of the order of the thickness of the heat 
source. Hence the hydrodynamic zone can also be assumed 
to be compact compared to the acoustic field (acoustic 
zone). 

Thermoacoustic instability analysis is the study of the 
dynamics of the coupled system, comprising of the acoustic 
field in the tube and the unsteady heat transfer from the 
heat source (hydrodynamic zone). Therefore, it is important 
to track variations on the length scale of the acoustic zone 
and on the length scale of the radius of the hydrodynamic 
zone.  Further, the acoustic time scale tac = la/c (c-speed of 
sound) and the time scale tcc = lc/u (u-velocity of the base 
flow) in the hydrodynamic zone are of the same order for 

typical values mentioned above. This leads to an effective 
coupling of the dynamics of the acoustic field and the 
unsteady heat release rate from the heat source.   The 
problem has two length scales separated by a large factor 
(lc /la →0) and one time scale (tac/tcc~1).  Since the flow is 
at very low Mach number (M ~ 10-3), the fluid dynamics 
equations become ill-conditioned [60]. Moreover, a smaller 
grid size near the heater will reduce the maximum timestep 
that can be achieved for the numerical scheme. All these 
make the governing equations stiff. As a consequence, 
solving the problem using CFD is a difficult task. 

A standard technique available to solve this kind of two 
scale problem is asymptotic analysis [61].  Asymptotic 
analysis performed in the limit of compact heat source and 
zero Mach number of the steady flow leads to two systems 
of equations: one governing the acoustic field and the other 
governing the unsteady flow and heat transfer near the heat 
source [62]. The separation of equations for the acoustic 
field and heat source occurs in an elegant way.  The 
coupling between the above two systems of equation 
appears naturally. Further, a non-trivial additional term 
appears in the momentum equation of the hydrodynamic 
zone, which has serious consequences on the stability of 
the system. This additional term is the global acceleration 
term. The presence of pseudo-acceleration term is generic, 
when there are two length scales involved in the problem. 

The size of the linearized operator in such a system is much 
higher than what can be performed using SVD. Therefore, 
Mariappan et al. [14] used the technique of adjoint 
optimization to arrive at the optimum initial condition for a 
model thermoacoustic problem - Rijke tube, with a detailed 
model for the dynamics of the heat source. 

8.4. Experimental efforts 

The ideas of non-normality and transient growth are being 
pursued by the fluid dynamics community for nearly two 
decades, resulting in a large body of theoretical and 
numerical studies in the literature. However, there are just a 
handful of experimental results. The lack of experimental 
studies in the author’s opinion is due to the inherent 
difficulty in extracting the relevant details (say for example 
growth factor) from experiments. 

So far, there have been no published experimental studies 
on non-normality and transient growth in thermoacoustic 
oscillations. The study of nonlinear effects has been mostly 
confined to determining the nonlinear heat release response 
of flames performed in experiments where the flame is 
forced by externally imposed velocity fluctuations. Not 
many studies carefully examine the nonlinear effects, in 
particular subcritical transitions (triggering instabilities) in 
thermoacoustic systems. The author hopes that in the near 
future there will be serious effort to study both non-
normality and nonlinearity in self-excited thermoacoustic 
systems. 
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