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Abstract This work is motivated by our long-
standing claim that reconnection of coherent struc-
tures is the dominant mechanism of jet noise gen-
eration and plays a key role in both energy cascade
and fine-scale mixing in fluid turbulence (Hussain
1983, 1986). To shed further light on the mecha-
nism involved and quantify its features, reconnec-
tion of two anti-parallel vortex tubes is studied by
direct numerical simulation of the incompressible
Navier-Stokes equations over a wide range (250-
9000} of the vortex Reynolds number, Re (= circula-
tion/viscosity) at much higher resolutions than have
been attempted. Unlike magnetic or superfluid re-
connections, viscous reconnection is never complete,
leaving behind a part of the initial tubes as 4L thread-
sal. ™, which then undergo successive reconnections
(our cascade and mixing scenarios) as the newly
formed aL"bridgesik™ recoil from each other by
self-advection. We find that the time #p for orthog-
onal transfer of circulation scales as rg =~ Re /4,
The shortest distance o between the tube centroids
scales as d = a(Re(ty — 1))*/* before reconnection
(collision) and as d == b{Re(t — rn}]3 after reconnec-
tion (repulsion), where fp is the instant of smallest
separation between vortex centroids. We find that &
is a constant, thus suggesting self-similarity, but a
is dependent on Re. Bridge repulsion is faster than
collision and is more autonomous as local induction
predominates, and given the associated acceleration
of vorticity, is potentially a source of intense sound
generation. At the higher Re’s studied, the tails of
the colliding threads are compressed into a planar jet
with multiple vortex pairs. For Re > 6000, there is an
avalanche of smaller scales during the reconnection

- the rate of small scale generation and the spectral
content (in vorticity, transfer function and dissipation
spectra) being quite consistent with the structures
visualized by the A; criterion. The maximum rate of
vortex circulation transfer, enstrophy production and
dissipation scale as Re',Re’/*,Re~'/2, respectively.
A more detailed study of subsequent reconnection of
threads requires much higher-resolution simulations
that are currently not feasible.
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1. Background

There is now considerable renewed interest in vor-
tex reconnection, not only in viscous vortices, but
also in quantized vortices - the similarities and dif-
ferences between them have been recently reviewed
[1]. Although explored before, the viscous reconnec-
tion mechanism and its quantitative characterization
have remained vague [2]. We attempt to shed fur-
ther light on this mechanism - long suggested by us
to be the essence of mixing and cascade in turbu-
lent flows. Our interest in reconnection arose from
our search and suggestion for the mechanisms of jet
noise generation. Refuting the prevalent suggestion
that vortex pairing was the primary source of jet noise
[3-6], Hussain & Zaman [7,8] asserted that it must be
the reconnection of the underlying lobed vortex rings
into satellite rings - an abrupt viscous process involv-
ing topological transformation - that produce most jet
noise. Hussain further claimed [9,10] that reconnec-
tion of vortex filaments was the essential element of
turbulence cascade and fine-scale mixing. Althougha
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number of studies [11-16] have addressed the viscous
reconnection problem, both the underlying mecha-
nism and various scaling relationships have remained
clusive. We present here some of the important scal-
ing relations and exp]anal:iuns of the mechanisms.
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Figure 1: Initial configuration
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Figure 2: Vorticity magnitude iso-surfaces at 40% of
maximum initial vorticity (colored with contours of
axial vorticity) for Re=2000

2. Problem setup

To focus on the basic mechanism of reconnection,
we adopt a simple initial condition similar to that used
by Melander & Hussain [15]. Two anti-parallel vor-
tex tubes are initialized in the flow with a symmetric
perturbation to the vortex axes (Fig. 1). The com-
putational domain is a cube of side 2x, withz =0

being the symmetry plane and the vortex axes being
nominally aligned with the z-axis. The position of the
vortex centroid is given by r = {x.+ peosa f(z),y. +
psinof(z)}, where (x.,).) is the position of the un-
perturbed vortex centroid, p is the amplitude of the
perturbation, o is the angle of the vortex axis with
respect to the x-axis and f(z) is the form of the per-
turbation. A divergence-free vorticity field is then
specified as @ = ay(r/r.)[acosaf'(z),asinaf’ 1]
where ax(r) is a compact Gaussian distribution (for
r < r.) as detailed in Melander and Hussain. In
the present work, (x..y.) = (£0.81,0), & = 60°,
re = 0.666, p=0.2 and f(z) = cos(z). Several sim-
ulations were performed for Reynolds numbers (de-
fined as Re = I'. /v, where I'. is the circulation of each
vortex tube and v is the kinematic viscosity) of 250,
500, 1000, 2000, 4000, 6000, 7500 and 9000.

A pseudo-spectral formulation of the vorticity
transport equations[16] is used for the flow solution
with grid convergence assessed by monitoring pile
up of spectra and by repeating every calculation on
a mesh that is 1.25 times as coarse in each direction.
The mesh sizes ranged from 64° to 10243,
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Figure 3: Time evolution
3. Physics of reconnection

Figure 1 accentuates the initial sinusoidal dis-
placement and tilting of the tubes, designed to as-
sure that the two will collide with each other by self-
induction, thus initiating and sustaining reconnection.
Also shown is the coordinate system and the symme-
try (x —») and dividing (y — z) planes. Figure 2 shows
the time progression of the reconnection. The rate of
flattening, evident in Fig. 2b, increases with Re; the
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resolution of this structure was found to limit com-
putations at very high Re. Note that in the inviscid
limit, the vortex cores can be expected to be pressed
into infinitesimally thin vortex sheets as suggested in
Ref. [17]. Asa comparison with that work, the finest
mesh resolution in the present work was around 1%
of the vortex core diameter which is about 3 times
coarser than the finest mesh used in the inviscid sim-
ulations of Ref. [17]. At the point of contact be-
tween the two tubes, adjacent vortex lines belonging
to the two tubes cancel each other by viscous cross-
diffusion connecting the remainder of the lines on
either end of the region. The sharp corner at the re-
connected points at both ends of the annihilated part
recede rapidly away from each other and also curl
up (by curvature-induced self-advection), while be-
ing stretched by the continuing rotation of the tubes
and then laid orthogonal to the tubes atop them. Suc-
cessive reconnected lines are likewise stretched and
laid on top of the prior vortex lines, orthogonal to
the initial tubes - the genesis of the bridges. The
corresponding circulation transfer (loss) from the ax-
ial direction to the orthogonal direction is shown in
fig. 3a. The cross diffusion is caused by the vortic-
ity gradient close to the symmetry plane, intensified
by collision and stretching. Note that interpretations
in terms of vortex lines have to be reconciled with
viscous effects and in fact vortex lines may not nec-
essarily stay near the center of the core even in in-
viscid flows[18]. As the hairpin-shaped bridges get
stronger with increasing transferred circulations, self
induction causes them to retract from the interaction
region. This action also progressively stretches the
remainder (the threads) of the tubes while simulta-
neously reversing their curvature by the jet between
the two bridges. This reversal makes the two threads
move away from each other, thus slowing the circu-
lation transfer and actually arresting the reconnection
process.

When the bridges have moved sufficiently far
apart, however, mutual induction between the two
adjacent threads would overcome the thrust of the
weakened jet of the bridge pair, reversing their curva-

ture, again, at the point halfway between the bridges.
This will cause the two threads to collide again, start-
ing the next round of reconnection. The process thus
will repeat again (if Re is high enough) and is the pro-
posed reconnection cascade scenario. There is a sec-
ond facet of the reconnection: fine-scales triggered
at the thread-bridge junction, particularly at higher
Re. Note the reorientation of the vortex line passing
through the vortex center at the end between Figs.
2¢.d. Although the threads are clear, their imminent
second reconnection is apparent from Fig. 2f. The
heightened deformation of the vortex lines leading to
the topology changing reconnection event is evident.
Also, the vortex lines passing through the centers of
the threads are intensely stretched (see at ¢ = 4.46),
leading to an array of small scale structures, espe-
cially at higher Re.
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Figure 4: Circulation transfer metrics
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Figure 5: Spectra for Re=2000
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Figure 6: Spectra for Re=6000
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Figure 7: Ewvolution of volume averaged enstrophy
production

4. Scaling with Reynolds number

A particularly interesting question is the evolu-
tion of the separation distance between the tubes and
bridges. Figure 3b shows this separation at two rep-
resentative Reynolds numbers. Unlike in magnetic or
superfluid reconnections, where each reconnection is
complete with no threads, and hence the separation
between the tubes and bridges is clear, here separation
distance cannot be sharply defined. The tubes un-
dergo significant core deformation before reconnec-
tion, and the reconnected vortex filaments take some
time to collect together to form the bridge. In both
stages, the vorticity is distributed in irregular shapes
without any clear vortex center. We thus take the vor-
ticity centroid (taken to be the centroid of all vorticity
that is above 75% of the maximum vorticity) to be the
location of the tubes and bridges. With this caveat,
the time for reconnection can be fairly accurately de-
fined. The separation d between the tubes was found
to scale as d = a(Re(ty —1))*/* before reconnection
(collision) and as d = b(Re(t —ty))* after reconnec-
tion (repulsion), where #y is the instant of smallest
separation between vortex centroids. We find that &
is a constant, thus suggesting self-similarity, but a is
dependent on Re. The repulsion exponent exceeds
the collision exponent because the bridge curvature
is higher than that of the colliding vortex tubes. On
changing the initial condition to the one proposed in
Ref. [17] for two representative Reynolds numbers
(Re=1000,4000), it was observed that the post recon-
nection scaling was largely unaffected whereas the

collision exponent was seen to increase to (.82 (based
on two data points). This is to be expected as there
is a strong dependence on the curvature of the vor-
tex tubes. Bridge repulsion is faster than collision
and is more autonomous as local induction predom-
inates. This curvature increases with Re resulting in
impulsive motion of the bridges. This acceleration is
expected to play a major role in noise generation.

It is quite clear from the above discussion that vis-
cosity is the cause of reconnection by cross-diffusion.
At very high Re, accelerated circulation transfer near
the reconnection time is observed as seen in Fig. 3ain
the form of a rapid reduction of axial circulation. The
maximum rate of change of circulation was found to
scale simply as Re' (Fig. 4a). With increasing Re, the
onset of bridging is delayed due to decreasing viscous
effects, but as bridging commences, the topological
rearrangement of vorticity is rapid and the reconnec-
tion process is accelerated. The reconnection time fg
{defined as the time for the axial circulation to reduce
from 95% of its original value to 50%) was found
to scale as Re~3/* (Fig. 4b). This period is chosen
because at later times, the circulation transfer is con-
siderably affected by the evolving asymmetry.

Further insight into the dynamics of the recon-
nection can be obtained by investigating the enstro-
phy and enstrophy transfer spectra as shown in Figs.
5.6. The flattening of the vortex tubes in the contact
region and the simultaneous initiation of bridges and
the formation of the threads (in a head-tail structure)
generates enstrophy at much higher wave numbers
(note the focusing of the enstrophy transfer in a nar-
row wave number band). The rapid development of
these small-scale structures is followed by an equally
rapid decay due to viscous dissipation.

Figure Ta shows the evolution of the volume av-
eraged enstrophy production. Not unexpectedly, the
peaks do not stand out in the volume average, but are
seen to fit a power law (Fig. 7b) given by Re'7*!,
The peak dissipation rate was also found to scale as
Re 052

Figure 8 shows the A; (middle eigenvalue of ve-
locity gradient tensor) iso-surfaces for three represen-

104 | Page



tative Re at instants beyond the reconnection time. At
highest Re, the intense stretching and high curvature
of the vortex lines (near the region that connects the
threads to the reconnected vortices) results in the gen-
eration of extremely thin sheet-like structures which
subsequently break down into much smaller scales.
The transition to an increasingly complex entangle-
ment of vortex lines is further aggravated by the ap-
pearance of asymmetries in the y —z plane. The origin
of this asymmetry is shown in Fig. 9. As the threads
approach each other, the cores are flattened, leading
to the formation of the head-tail structure. Due to
the higher concentration of vorticity, the head of the
dipole advects faster than the tail, and, as a result, the
dipole structure is stretched into a sheet-like struc-
ture, similar to a planar jet. The sheets then roll-up
via Kelvin-Helmholtz instability, generating multiple
dipoles (threads) and this highly unstable configura-
tion ultimately gives rise to asymmetries as in a plane
jet.
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Figure 8: A; iso-surfaces (colored with vorticity mag-
nitude) at ¢ = 4.95
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Figure 9: Contours of axial vorticity for Re=6000
(slice through the dividing plane)

In this work, we have elucidated the mecha-
nism of viscous vortex reconnection and quantita-
tive and qualitative effects of Reynolds number are
documented. We believe that our findings would be
useful in the development of theories of turbulent cas-
cade, mixing and aerodynamic noise. These phenom-
ena can be explored in greater depth at much higher
Reynolds numbers, which are beyond currently avail-
able computational resources.
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