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PHREE-DIMENSIONAL ASPECTS OF BOUNDARY=-LAYER
TRANSITION

Itiro Tani, Professor Emeritus,
University of Tokyo, Japan

1,0 INTRODUCTION

In the present paper it is inténded to
discuss only a limited number of subjects
concerning the three~-dimentional aspects of
boundary-layer transition, especially those
which are not only essential for affording
a correct understanding of the basic fea-
mmofumﬁﬂm,Mtﬂmaawﬂeﬁr
systematizing the writer's own thoughts on
the problem of transition.

2.0 TRANSITION IN TWO-DIMENTIONAL BOUNDARY
LAYERS.

Transition in Blasius boundary layer
and plane Poiseuille flow is preceded by
the appearance of two-dimentional waves of
the type predicted by linear stability
theory (Tollmien-sSchlichting waves) ,but the
effect of finite amplitude presents itself
in the form of a nearly periodic variation
of wave amplitude in the spanwise directian,
with maxima (peaks) and minima (valleys)
along certain streets parallel to the
stream. This variation of wave amplitude
generates a system of streamwise vortices,
which in turn redistributes the momentum of
the basic flow, in particular, producing an
inflexional velocity profile at the peak
position. The theory of Benney and Lin
(1960, 1961, 1964), centered on the non-
linear interaction between a two=dimensiond
wave and a three-dimensional wave with spam-
wise periodicity. accounts for the generat-
jon of streamwise vortices from an initially
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weak spanwise variation in wave amplitude,
but offers no explanation as to the mechani-
sm by which the three-dimensional effects
predominate in the nonlinear wave evolution.
The weakly nonlinear stability theory, due
primarily to Stuart (1960) and Watson (1960,
1962) for two-dimensional waves, has recent—
ly been worked out by Itoh (1980a) to
include three-dimensional effects. The
theory appears to be successful in indicat-
ing the earlier generation of three-dimens-
ional disturbances as the result of a sub-
critical threshold instability, thus accoun-
ting for the experimental evidence (Kleban-
off and Tidstrom 1959) for the existence of
a threshold applitude above which the forma-
tion of peaks and valleys eventually leads
to breakdown of wave motion. On the other
hand, the experimental result that increase
ing the initial wave amplitude beyond the
threshold has no significant effect on the
structure of peaks and valleys appears to
afford a support to the writer's interpre-
tation of the peak and valley formation as
displaying a stable finite-amplitude eguili-
brium.

Breakdown of wave motion occurs in the
form of high-frequency generation of
hairpin-shaped eddies, which is interpreted
as the onset a@f a secondary instability of
the boundary layer perturbed by the primary
instability, exhibiting an inflexional
velocity profile for a certain fraction of
each cycle of the primary wave at the peak
position. The idea of secondary instabi-
lity of the inflexionally profiled flow,
which had long since been anticipated by
Prandtl (1933), was worked out first by a
crude, quasi-steady, inviscid analysis of
Greenspan and Benney (1963), and then by a
more ambitious approach of Landahl (1972)
to extend the ideas of the kinematic wave
theory of Whitham (1974) for conservative
systems to slightly dissipative system.
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However, Landahl's analysis is difficult to
fotdow without meeting with some inconsis-—
tencies. The writer looks forward to a
recent attempt ¢f Itoh (1980b) to pursue

the way out of the difficulties encountered
by Landahl by treating both wavenumber and
frequency as complex and introducing the
complex space coordinates, with the real
coordinate corresponding to the Galilean
coordinate moving with the phase velocity 6f
the primary wave, Mention is also made of
the boundary layer on a concave wall, where
the streamwise vortices (GSrtler vortices)
are generated as the direct result of prima-
ry instability, while the breakdown into
hairpin eddies is interpreted as due to
the secondary instability of inflexionally
profiled boundary layer flow. Importance of
Reynolds number is to be noticed for correc-
tly understanding the results of experimen-
tal observation such as due to Bippes and
Ggortler (1972) and Ito (1980).

3,0-TRANSITION IN THREE-DIMENSIONAL BOUNDARY
LAYERS

In a three-dimensional boundary layer
such as occurring on a rotating disk or en
a swept wing, the velocity vectors along
the soild wall possess components both
parallel and normal to the invisdéid stream-
line outside the boundary layer. Because of
the normal or cross-flow component, there
exists a certain range of directions of
propogation, in which the velocity profile
is unstable and the disturbance is ampli-
fied, as first disclosed by Gregory,Stuart
and Walker (1955). In the light of the
numerical caluclation of Yamashita and
Takematsu (1974), the vortex patterns obge-
rved prior to transition on a rotating disk
. are to be intrepreted, however, not as due
to the neutral stationary disturbances
generated by a particular velocity profile,
which changes sign from negetive to positiwe
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as the wall is approached and has a point
of inflexion at the pvoint of zero velocity
as previously surmised,but as due to the
most amplified mode of stationary disturb-
ances generated by one of the neighbouring
velocity profiles which has a point of
inflexion at the point of slightly positive
velocity. On the experimental side,
Kitamura's observation (1973) deserves
special mention from the fact that the dis-
turbance is amplified linearly in the regiom

of r(w/» )% from 4.3 x 102 to 4.9 x 10°

and that the nonlinear development of dis-
turbances is characterized by the appearance
of the second harmonics and then the third
and higher harmonics until eventually random
fluctuations prevail.

4.0 TRANSITION INDUCED BY ROUGHNESS ELEMENT

It is now known from the experiments
of Klebanoff and Tidstrom (1972) that the
mechanism by which a two-dimensional rough-
ness induces earlier transition is attribu-
ted to the destabilizing influence of the
flow in the recovery region immediately
downstream of the roughness element. There
are scattered evidence to imagine that the
effect of a three-dimensional roughness
element is also stability dominated. Visual
observations of Gregory and Walker (1951)
and Mochizuki (1961) have revealed the
existence of two sets of streamwise vortices
downstream of a three-dimensional roughness
element at a subcritical free-stream velo-
city. The one is a closely spaced palr of
spiral filaments rising from the wall close
behind the roughness until trailing down-
stream at a evel of the top of the rough-
ness, and the other is a horseshoe-shaped
vortex filament wrapped round the front of
the roughness and trailing downstream.
These vortices produce unstable velocity
profiles along the center line in the near
wake of the roughness, but stable velocity
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profiles in the far wake. This appears to
explain the experimental observation of the
closely spaced vortex filaments breaking up
into hairpin eddies with a slight increase
in velocity, which, unlike those observed
in the transition of Blasius flow on a
smooth flat plat, do not directly lead to
turbulence. Turbulence might originate
somewhere away from the wake center line,
where the boundary layer becomes three-
dimensional, with the cross-flow velocity
component induced by the streamwise vortices.
These conjectures are supported by the
recent measurements of Gupta (1980) in the
wake of a roughness element. It is also
probable that the stationary vortices gene-
rated by cross-flow instability induce ano-
ther pair of streamwise vortices downstrean
and outside until a wedge-shaped turbulent
region is formed.

5.0 GROWTH OF A TURBULENT SPOT

Formation of a turbulent wedge downst-
ream of a roughness element presents a
typical example of the spanwise growth of a
turbulent region embedded in a turbulent
spot, in which the growth normal to the wall
is explained by turbulent entrainment.Exami-
nation of the profiles of the ensemble-
averaged streamwise velocity in a turbulent
spot (Handa 1976) suggests the spanwise
growth normal to the wall. The spanwise
growth appears to be associated with the
field of flow which resembles that due to a
pair of streamwise vortices in the vicinity
of the leading edge of the spot, suggesting
that the situation might be similar to that
already observed downstream of a three-
dimensional roughness elementThis& corrobo-
rates the view that the spanwise growth is
due to destabilization by induction of the
surrounding fluid, aview' shared also Dy
Cad-el-Hak, Blackwelder and Riley in their
recent paper (1980).
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